
TM

SYS-CON
PUBLICATIONS

E-Commerce
Electronic Java
by Ajit Sagar pg.22

Straight Talking
Forget Stress –
Life is a Gas...

by Alan Williamson pg.26

Java Industry News
pg.64

Guest Editorial
I Have Seen the Future
by Alan Williamson pg.7

Swing
Meet the Swing JTable

by Michael Hatmaker pg.30

SYS-CON Radio
Interview with

ObjectSpace’s David Norris
pg.48

Product Review
SpacialVision

by Jim Milbery pg.42

JDJ Feature: Data-Driven Components Erik Hyrkas
What are they, and why do I want to know? 8

On JavaBeans Customization Lawrence Rodrigues
Overcome the limitations of the property sheet
by building a special-purpose customizer 14

Digital Neural Network Control Using JINI: Bernie Arruza
Delay the conversion of your hardware control libraries 38

Case Study: ObjectSpace’s Voyager Product Art Nevarez
Novell looks for – and finds – a way to give developers an easy
solution to the problem of extending network functionality 44

Flashline Model on JavaBeans Marketing: Charles Stack

Outsourcing Development One Bean at a Time
Flashline helps match developers with firms seeking component development 50

Techniques: Cascading JFrames David Anderson
Making your infrastructure invisible and easy to use 56

The Grind: ‘Make the Iron Hot by Striking It’ Rick Ross
Everyone wins when the platform is supported by thousands of developers 70

From the Editor
New Technology

by Sean Rhody pg.5

Novell
Partners
with

Object
Space

p.44

Novell

Object
Space

Volume:4 Issue:5, May, 1999

The World’s Leading Java Resource

HIGHEST
PAYING

NEW!
Java Career

Opportunities
p.65

2 • VOLUME: 4 ISSUE: 5 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

BEA
weblogic.beasys.com

3VOLUME: 4 ISSUE: 5 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Protoview
www.protoview.com

4 • VOLUME: 4 ISSUE: 5 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Inprise
www.inprise.com/appserver

The saying goes, “Build a better mousetrap and the world will beat a path to your
door.” The world rewards innovation and improvement. It likes new things. This
month’s focus is on new Java technology. Given the rapid pace of development in
our area, that’s not quite the oxymoron that it appears. New specifications, new
releases, new products come out almost daily. Last year SUN released the 1.0 spec-
ification for Enterprise JavaBeans. I can name a dozen products that implement the
1.0 specification at this point, and that number is likely to grow before it shrinks.
More recently, the Java 2.0 release became available to the general public. Depend-
ing on your viewpoint, this is either old news to you, or too bleeding edge to con-
sider yet.

One of the most invigorating things about Java (for me, at least) is the way the
technology advances at such a rapid pace. At this rate, the
improvement you need is just around the corner. For other peo-
ple, this is a difficult issue. Maintenance of
code through various releases is a prob-
lematic area. As a consultant I frequently
see shops that are three, even four
releases behind the current release of
their primary development tool.
Migrating code to the current version is
often an arduous process. And yet the
pace of the industry requires making the
investment in updates. Often, only the current and next-to-last versions of a devel-
opment package are supported by the vendor (thus ensuring a continuing revenue
stream for updates, but somebody has to pay for all the improvements). So far, Java
has completely deprecated an existing event model, done major surgery on its win-
dowing toolkit and released a flurry of new specifications. Not bad for a 2.0 product.

Back to EJB for a second. One of the press releases I received recently discussed
the use of EJB to provide for the registration of thousands of college students at a
major East Coast university. This is one of the first large-scale success stories to
date concerning EJB. The OMG group (the CORBA people) has been very active
working with SUN and the various EJB vendors to marry CORBA and EJB. This mar-
riage helps secure EJB as the emerging standard for distributed computing.

One of the newest APIs to emerge from SUN is the JTA specification. JTA is Java
Transaction API, and is a higher level specification that will supersede Java Trans-
action Service (JTS), which will remain as a low-level protocol. JTA is tied to the EJB
specification and is really an attempt to improve the basic flaw of JTS – no two-
phase commit. JTA will include support for the XA protocol, which is the industry
standard for heterogeneous transactions.

I don’t expect the pace of development to slacken anytime soon. Although the
Java language itself is somewhat more mature with Java 2 than it was in its infancy,
other tools and products have still to emerge. Testing Java applications is still in the
startup phase, with products from SUN emerging to compete with existing products
that are scrambling to adapt to Java testing. Source code control is also expanding.
In short, we’re watching the birth of the Java third-party market.

About the Author
Sean Rhody is the editor-in-chief of Java Developer’s Journal. He is also a senior consultant with Computer
Sciences Corporation, where he specializes in application architecture – particularly distributed systems.
He can be reached by e-mail at sean@sys-con.com.

New Technology

FROM THE EDITOR

Sean Rhody, Editor-in-Chief

EDITORIAL ADVISORY BOARD
Ted Coombs, Bill Dunlap, David Gee, Michel Gerin,

Arthur van Hoff, Brian Maso, John Olson,
George Paolini, Kim Polese, Sean Rhody, Rick Ross,

Ajit Sagar, Richard Soley, Alan Williamson
Editor-in-Chief: Sean Rhody

Art Director: Jim Morgan
Executive Editor: M’lou Pinkham

Managing Editor: Brian Christensen
Assistant Editor: Nancy Valentine

Proofreader: Anne-Marie Babcock
Editorial Consultant: Scott Davison

Technical Editor: Bahadir Karuv
Product Review Editor: Ed Zebrowski

Industry News Editor. Alan Williamson
E-commerce Editor. Ajit Sagar

WRITERS IN THIS ISSUE
David Anderson, Bernie Arruza, Michael Hatmaker,
Erik Hyrkas, Jim Milbery, Art Nevarez, Sean Rhody,

Lawrence Rodrigues, Rick Ross, Ajit Sagar,
Charles Stack, Alan Williamson

SUBSCRIPTIONS
For subscriptions and requests for bulk orders,

please send your letters to Subscription Department

Subscription Hotline: 800 513-7111
Cover Price: $4.99/issue

Domestic: $49/yr. (12 issues) Canada/Mexico: $69/yr.
Overseas: Basic subscription price plus airmail postage

(U.S. Banks or Money Orders). Back Issues: $12 each

Publisher, President and CEO: Fuat A. Kircaali
Vice President, Production: Jim Morgan
Vice President, Marketing: Carmen Gonzalez

Chief Financial Officer: Ignacio Arellano
Accounting Manager: Eli Horowitz
Circulation Manager. Mary Ann McBride

Advertising Account Manager: Robyn Forma
Advertising Assistant: Megan Ring

Graphic Designers: Robin Groves
Alex Botero

SYS-CON Radio Editor: Chad Sitler
Webmaster: Robert Diamond

Customer Service: Sian O’Gorman
Paula Horowitz
Ann Marie Milillo

Online Customer Service: Mitchell Low

EDITORIAL OFFICES
SYS-CON Publications, Inc.

39 E. Central Ave., Pearl River, NY 10965
Telephone: 914 735-7300 Fax: 914 735-6547

Subscribe@SYS-CON.com

JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944) is
published monthly (12 times a year) for $49.00 by SYS-CON

Publications, Inc., 39 E. Central Ave., Pearl River, NY 10965-2306.
Application to mail at Periodicals Postage rates is pending at

Pearl River, NY 10965 and additional mailing offices.
POSTMASTER: Send address changes to:

JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,
39 E. Central Ave., Pearl River, NY 10965-2306.

© COPYRIGHT
Copyright © 1999 by SYS-CON Publications, Inc. All rights reserved. No part of

this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopy or any information storage and
retrieval system, without written permission. For promotional reprints, contact

reprint coordinator. SYS-CON Publications, Inc., reserves the right to revise,
republish and authorize its readers to use the articles submitted for publication.

Worldwide Distribution by
Curtis Circulation Company

739 River Road, New Milford NJ 07646-3048 Phone: 201 634-7400

Java and Java-based marks are trademarks or registered trademarks
of Sun Microsystems, Inc., in the United States and other countries.

SYS-CON Publications, Inc., is independent of Sun Microsystems, Inc.
All brand and product names used on these pages are trade names,

service marks or trademarks of their respective companies.

5VOLUME: 4 ISSUE: 5 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

6 • VOLUME: 4 ISSUE: 5 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Cerebellum
www.cerebellumsoft.com

7VOLUME: 4 ISSUE: 5 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

One
Realm

www.

onerealm.com/

jdj

Last month I came to you as a developer
as opposed to a CEO. Well, this time I’m
moving up the social ladder and I’m writing
in the capacity of a user. I’d like to tell you
a little story that scared the living daylights
out of me. Continuing on the “Ally McBeal”
theme from last time, I have seen a glimpse
of the future, and all I can say is, “I am trou-
bled.”

I was out walking in the middle of Lon-
don. It was a beautiful, sunny day. Ever
since I upgraded my old analog mobile
phone to a nice, shiny Nokia digital phone,
I’ve found myself using it more often. Cou-
ple this with the fact that I have one of
those headsets for the phone that allows
me to stay on it for hours without the fear
of blowing my head off with the fallout from
the nuclear reactor held to my ear.

I love my Nokia. This is the popular one
as seen in the movie Armageddon and the
one Mulder, from “The X-Files,” uses to ask
Scully various useless things. It’s filled with
features. Lots of different features, and a
great display. It’s everything I never knew I
wanted from a phone.

Back to London. I had just finished a call
to the office, which inspired another call to
be made. I took my phone in hand and
moved the cursor up and down the address
book with all my contacts in it (which was
previously beamed from my PC straight
into my phone). However, the whole phone
froze. Completely hung on me. The display
was still alive, but all my buttons where
dead and – even more frightening – my
on/off switch was rendered useless.

I had to pop the battery off and back on
again to return the machine to life. It then
burst back as if nothing had happened. So
what went wrong that required me to
reboot my phone?

Short answer: Who knows? Chances are,
even Nokia doesn’t know.

As more of our appliances become more
reliant on software, we run the risk of
adding more features than beta testers can
realistically debug effectively. Are we going
to have video recorders hanging in the mid-
dle of recording, or toasters crashing as
they brown bread? I hope not.

But why is it that, as the features get rich-
er, the bugs exponentially increase. Surely
we should be spending more time getting
what we have working before adding new

bells and whistles. Or is the pressure of con-
tinually evolving products so great that
companies are taking the risk of bugs in
favor of the overall dazzling product?

As you all probably know, Java was not
destined for the environment it’s running in
now. It was originally conceived for the
very appliances we’re experiencing prob-
lems with. Maybe it’s about time Java came
full circle and completed the job it started
out to do. As these devices become far
more flexible and functional, the risk of
them falling over is also increased.

We don’t wish to get to the level of stabil-
ity that some...mentioning no names...desk-
top operating systems offer us today. How
different the world would be if every time
we went to make a cup of coffee we had to
debug the kettle!

I just hope we never get to the stage
where we have to download the latest
patch for our washing machine from the
manufacturer’s Web site so we can wash
our whites brighter than white. Can you
imagine how complex shopping for house-
hold appliances would become when we’re
comparing version numbers of vacuum
cleaners? A sorry state of affairs. How
about virus checkers for appliances? Imag-
ine having the RED day virus, which on a
given date washes all your clothes at the
highest possible temperature. It may sound
far-fetched and silly now, but in five or ten
years’ time, let’s see how silly it is then.

The future is based on software. The hard-
ware is probably going to be the most stable
part of the system, but let down by poorly
written software. Some say writing bug-free
code is possible; some say it isn’t. I’m in the
camp where you can write software only as
good as the environment will allow.

We need a tool that will help us, work
with us – and hopefully catch a lot of the
silly errors before the end user even gets
near it.

Is Java that tool?

About the Author
Alan Williamson, JDJ’s “Straight Talking”

columnist and a member of the JDJ Editorial Board,
is CEO of n-ary ltd, a Java consultancy company
with offices in Scotland, England and Australia that
specializes solely in Java at the server side. Alan is
the author of two Java Servlet books and has
contributed to the 2.1 Servlet API. He can be

GUEST EDITORIAL

Alan Williamson

I Have Seen the Future

8 • VOLUME: 4 ISSUE: 5 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

JDJ FEATURE

Data-driven – or data-aware – compo-
nents are objects that listen for changes in
the data and notify other data-driven com-
ponents that have requested to listen. This
design is a powerful means of maintaining
an application throughout not only the first
development cycle, but also subsequent
cycles as your product becomes more
robust and refined.

A component can be either a “behind-
the-scenes working object” that loads and
manipulates data directly or a “user inter-
face tool” that you can click on or type in.
Classes that need to send or receive data
change notifications should be made into
data-driven components.

Some basic overhead is involved in
accomplishing this, including superclassing
specific core Swing data models that are
needed for your application. The alterna-
tives often lack the flexibility to easily main-

tain your application and the robustness to
create a professional program.

In this article, I’ll discuss Swing data
models along with a custom data model to
handle our business objects and interact
with our middleware. Because of the scope
of this topic and the infinite requirements
possible, a specific code-complete imple-
mentation won’t be offered. However, I will
attempt to describe the design process in-
depth enough to empower you with work-
ing tools. The overall architecture used in
this article is three-tier. I won’t cover the
use of CORBA, RMI or other middleware

implementations for your business logic,
but the design is intended to handle each of
these multitier designs.

I would like to note that this article isn’t
directed toward a person unfamiliar with
Java or Swing, but rather a developer inex-
perienced with business application design
in Java and Swing.

From Problem to Solution
Every business application requires

data to be connected to the user interface.
Before you write any code, you have to
determine what is appropriate for the task

What are
they, and
why do I
want to
know?

by Erik Hyrkas

9VOLUME: 4 ISSUE: 5 1999 • Java DEVELOPER’S Journal

and the team. A solution that can be pro-
grammed fairly quickly and offers good per-
formance might be inflexible and time con-
suming to maintain. I’m not implying that a
robust, maintainable solution has to be dif-
ficult to design and develop, but it needs to
be thought out carefully. One of the most
challenging aspects of data-driven compo-
nents is proper design. Poor implementa-
tion can lead to elusive bugs and poor per-
formance.

A programmer who’s developing an
application alone might choose to create a
handful of methods and event handlers in

the body of the application that are
responsible for populating the user inter-
face and delegating data. Figure 1 demon-
strates this simple design. As the applica-
tion grows, these methods become
unwieldy with business logic and presen-
tation preparation. Eventually, the pro-
grammer will be faced with the challenges
of an inflexible design.

Java is object-oriented, and offers a solu-
tion – move data and user interface ele-
ments of the application into their own
classes. Each user interface component is
responsible for presenting its own data

properly. The data component is responsi-
ble for offering the means for other compo-
nents to readily access the data. In Swing,
the components are a bit more sophisticat-
ed and offer us an easy way to separate the
data aspect of the visual components. The
“data component” of the interface is the
Swing model for the specific Swing view
and controller.

A team of programmers confronted
with the same problem as the lone pro-
grammer might choose to divide the work
by individual interface and data compo-
nents. The developers creating the data
objects are responsible for managing the
content and defining the methods others
will use to access the data. The other team
members will code the visual components
and add public methods for other classes
to update or change the content. The com-
ponents are responsible for staying cur-
rent with their own data object, and every
data object is responsible for tracking its
own data. Figure 2 illustrates the design
concept.

This approach has a flaw. If the team
needs to add and remove components,
multiple developers are required to make
changes in numerous places. The program-
mer who creates new components must
wait for the person responsible for their
data component to add knowledge of the
new object. If the design is fluid and has
the potential to change, as nearly all
designs do, days or even weeks can be
wasted with minor component swapping.
Another serious issue lies in keeping the
data distributed. When multiple client
applications are accessing data and the
data changes, messages need to be sent to

the graphical interface
to show the new infor-
mation. These mes-

sages in the above
approach would

have to travel through
the methods that are hard-coded into the
data objects.

You need a common means by which the
components can communicate. The data
objects need to have a common inherited
ancestor, along with the base class that
gives them their core functionality. Java
doesn’t support multiple inheritance, like
C++, but there is a solution. An interface
can be written that puts in methods you
know will be present in all your data-aware
components. These methods will do the
core work of getting and setting informa-
tion in a way that’s compatible with the spe-
cific object that contains it.

You now wield a common means for cre-
ating each data component, but you still
need to reduce the work of swapping com-
ponents in and out, and build a highway for
messages to travel. A custom event can
trigger listeners to call methods in the
event’s source. You can use the event to
transfer notifications between the data-
aware components.

Every object that receives data should
be both a listener and an event notifier to
its own listeners. The components can
inherit an interface to be an event listener
and hold an instance of a component to fire
events to listening objects.

Your graphical interface is composed of
sets of visual components. Swing compo-
nents have three pieces: model, view and
controller. The model is what we’re inter-
ested in at this point. We can override the
core models used by the Swing compo-
nents in our application so they are data lis-
teners to our custom data model. The cus-
tom data model is responsible for creating
and storing business objects gathered from
the middleware (which might be built
around CORBA, RMI, custom socket
servers, etc.) and reflecting data messages
to the Swing models. An application-specif-
ic challenge of overriding the Swing data
models involves giving them the construc-
tors and methods that allow you to point at
select business objects from the custom
data model and choose the proper criteria
to narrow that selection.

Business objects are also inherited from
a common ancestor that allows our custom
data model to manipulate, transfer and
inspect them in a consistent means. These
data objects are responsible for maintain-
ing relationships with other business class-
es and displaying information through their
own business logic. They are key to our
design, since they allow our Swing models
to be constructed with specific business
constructs in mind.

Now you have the basic concepts of the
data model.

Getting Technical
Data-driven components allow for a

more flexible and robust means of creating
visual components, as well as data objects,
without prior knowledge of what the end
combination of objects will be. By creating
a generic data event model capable of firing
events to any component the developer
chooses to tie in, the application design
becomes more flexible and, over the devel-
opment cycle, more robust. Both the cus-
tom data model and the overridden Swing
data models are considered data compo-
nents. A data component fires events to
update, destroy, reload or filter information
while the receiving data component can
communicate back through the data com-
ponent interface methods. If you have only
a few graphical components and one data
object, you never need to change the
design, and the data never changes unless
the component tells it to; component-dri-
ven data is acceptable. However, in a dis-
tributed environment where data resides in
a central network location and is manipu-
lated by multiple users at multiple loca-
tions, the data model must be capable of
notifying all the components tied to it. Fig-
ure 3 depicts a typical environment for real-
time Java applications. If a client applica-
tion sends an event that updates the data,
the middleware must signal the other
clients’ custom data models to update.
CORBA developers refer to this as a call-
back. In an application not using real-time
updating, the responsibility for data syn-
chronization sits on the client side, where it
must periodically poll the database. The
balance is between concurrency – the num-
ber of users who can access the data at one
time – and consistency – the accuracy of
the data at any moment in time.

Every component that deals with data
implements two interfaces that contain the
common methods required to communi-
cate. The first interface needs to give us a
way of identifying our components as

“data-driven” and the common methods to
communicate. The definition might begin:

public interface dataComponent extends
dataListener {

public void addDataListener(dataComponent
l);

public Vector getData();
public void setData(Vector data);

The needs of each application will differ,
but the basic ability to get and set data is
essential for both our Swing models and
our custom data model. You can add meth-
ods to accomplish any functionality that
other dataComponents might want to per-
form on each other. For example, you might
add methods to reset the component to its
initial state or clear all data. The method for
addDataListener will be described later, but
for now you must accept that you need the
ability to add dataListeners.

The other interface your components
will require is an event listener. Listing 1
shows an interface that requires your com-
ponents to define methods for data destruc-
tion, updates, loads or filters. The exact
events that you need will vary, but a few
examples are provided to make it easier to
understand. The dataComponent extends
the dataListener, since we want to ensure
that all components are also listeners.

All of the dataListener methods receive
a dataEvent. Listing 2 shows an example
definition. The event is a simple object that
tells the listener what change has occurred
and where. The source is a very useful
object since it allows us to invoke methods
from the caller. Listing 3 has the code for
the dataNotifier. Notice that it won’t fire the
event if the source doesn’t belong to a data-
Component. Thus, you have methods at
your disposal from the source object that
will exist because only a dataComponent
can create a dataEvent. Since Java does not
support multiple inheritance, the code for
firing events was encapsulated in an object

http://www.JavaDevelopersJournal.com10 Java DEVELOPER’S Journal • VOLUME: 4 ISSUE: 5 1999

Figure 1: A simple data model

Data objects

APPLICATION

Application Methods

User
Interface

Figure 2: Component-driven data

middleware

data object
Transfer
via
Methods

data object data object

GUI
object

GUI
object

GUI
object

11VOLUME: 4 ISSUE: 5 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

EnterpriseSoft
www.enterprisesoft.com

http://www.JavaDevelopersJournal.com• VOLUME: 4 ISSUE: 5 1999Java DEVELOPER’S Journal12

that I named a dataNotifier, which can be
instantiated in every dataComponent.
Rewriting the code in all of the data-aware
components would be tedious and error-
prone if it needed to be changed later – and
just plain time consuming to type in.

The constructors of our Swing data
models are an important aspect of our
design. We need the ability to choose the
type of business objects we’re interested in,
and what criteria they must meet. Our cus-
tom data model is responsible for being a
data proxy and distributor of all the busi-
ness objects that we’ve already loaded. It
also retrieves and distributes new business
objects from the middleware.

When building your business objects, take
into account that they will eventually need to
be turned into displayable information, and it
may help to have standard methods that all of
your business classes contain. The Swing
TableModel is an easy case to remember, but
the TreeModel might give you some serious
headaches. I recommend adding methods
that can retrieve a value at a specified column
as well as the column name, and also return
the type of that column – very similar to the
getColumnClass(), getValueAt(), and get-
ColumnName() methods of the TableModel. If
you plan on tackling the TreeModel, plan
carefully because this is one of the most chal-
lenging of the Swing models.

Finally, we need to wire the components
together. Every dataComponent requires
the method addDataListener. In one central
location, where the models are instantiat-
ed, you can call addDataListener with
another dataComponent – your custom
data model, which is a superclass of a
dataListener. Your Swing GUI components
can instantiate data objects with parame-
ters that specify the business objects we
are interested in and the criteria they must
meet. You can create very complex designs
where custom data objects connect to each
other, and multiple overridden Swing mod-
els; however, that is beyond the scope of
this article.

Basic Design Considerations
When you tackle the design of your

application, be certain to review it closely.
Often bugs are created because events
reflect back from the data object to the
event caller, which the programmer didn’t
anticipate. Check to make sure only those
components that need to be listening are
connected, since it’s possible to generate a
considerable amount of traffic with multi-
ple data objects and hundreds of user inter-
face components. Be wary of creating infi-
nite event loops: dataComponent A triggers
an event that dataComponent B receives
and sends back to dataComponent A, and
dataComponent A sends the same event to
dataComponent B again. In most cases, you
need only one overridden Swing model of a
given type, since it’s designed to handle
data from a generic dataComponent. Your
constructors should be doing the work of
picking data constraints and converting the
business objects to be displayed for your
specific needs.

Java is object-oriented. Use it. Design
modularity into your application and this
will keep bugs from replicating them-
selves. You might laugh, but I’ve seen the
same bug-ridden code cut and pasted
everywhere in an application. Certainly,
there is a performance cost to calling

methods, but there are severe develop-
ment costs to creating spaghetti code.

One major performance consideration is
object creation. Java is very slow at instan-
tiating new objects. I have seen static dec-
larations of the different events in each
component so they don’t need to be reallo-
cated with every change. I have not bench-
marked this design myself, but I can guess
that in very busy components that fire
many events, allocating the event objects
once might save you significant processing
time.

Last Words
Solving the issues brought about by the

need for rapid development and creating
maintainable code is difficult. “Hard-coding”
knowledge of specific components through-
out your application is a dangerous task,
since it’s possible the components might
not survive the duration of the project
before they’re swapped out in favor of bet-
ter or different objects. Data-driven compo-
nents handle this by creating a highway for
events to travel back and forth without
regard to the specified objects tied in. This
generic interface allows developers free-
dom from delays while specific interfaces
are built for their individual components.

Finally, data-driven components give us
the power to update information from the
middleware all the way to the user's screen
in a seamless and elegant fashion.

About the Author
Erik Hyrkas is a full-time consultant in St. Paul,
Minnesota, and has been developing Java intranet
applications and applets for the business community
since the release of the language. He can be
reached at ehyrkas@pclink.com.

Application
specific GUI

Swing
data

models

Data
reflector

and
Collector

Business
Objects

Middlewaredata
events

Network

layer

Figure 3: Java applications deployed on a network

Subscribe Today
and receive the

“CFDJ Digital Edition”
FREE

Subscribe Today
and receive the

“JBDJ Digital Edition”
FREE
at www.JBUILDERJOURNAL.com

1800-513-7111
or subscribe online for faster service
subscribe@sys-con.comG

E
T

Y
O

U
R

 O
W

N
!

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

ehyrkas@pclink.com

13VOLUME: 4 ISSUE: 5 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Interbase
www.interbase.com/products/demojdj.html

Java DEVELOPER’S Journal14 • VOLUME: 4 ISSUE: 5 1999 http://www.JavaDevelopersJournal.com

JavaBeans, now in its third year, is prov-
ing to be a powerful component model.
Whether it’s the Java e-commerce frame-
work or the Java platform for the enter-
prise, JavaBeans is at the heart of many
new and exciting technologies. The Java-
Beans model provides a framework to
build, customize, run and deploy Java soft-
ware components. While there are numer-
ous books and articles on JavaBeans, not
many of them deal with the customization
aspect of JavaBeans.

An object that conforms to the Java-
Beans specs is called a JavaBean or, more
generally, a bean, which at runtime is like
any other object. What distinguishes it
from other Java objects is that it can be
manipulated with visual builder tools. This
process includes customization and con-
nection, which means that you can visually
customize beans and connect them to
assemble an application.

Let’s discuss customization using the Pie
Chart bean (part of the visualization bean
suite developed for my book, The Awesome
Power of JavaBeans) shown in Figure 1. If
you want to use this bean, you’ll probably
customize it to suit your application, which
may include changing the size and position
of the pie as well as the location of the leg-
ends. You can customize the bean visually
by using a bean builder tool. Once you cus-
tomize it, you may want to save the configu-
ration for future use by using the Java seri-
alization feature. Sun’s BeanBox, which
comes with the BDK, is an example of a visu-
al builder tool that allows you to customize,
serialize and connect beans. Most of the
Java IDEs provide similar tools.

Property Sheets
To customize a bean visually, you need

a tool to view and edit its properties –
builder tools typically provide property
sheets for this purpose. Figure 2 shows
the property sheet generated by the Bean-
Box for the Pie Chart bean. Every time you
insert a bean or click on the existing bean
in the BeanBox frame, the BeanBox gener-
ates a new property sheet. To generate
a property sheet, the builder tool obtains
the property names and their values
from the bean using a mechanism called
introspection.

Introspection
According to the JavaBean specs, three

basic features describe a bean: properties,
methods and events. The introspection
mechanism analyzes the bean classes to
obtain these features. A bean author can
help the introspection process by provid-
ing a design-time class, BeanInfo, that is
specific to a runtime bean class. For exam-
ple, PieChartBeanInfo is the BeanInfo class
for PieChart. Bean authors can provide
descriptions of bean features in the BeanIn-
fo class. In the case of a property, its
description may include display name,
access methods and short text.

How does introspection work? The
process first checks the BeanInfo class to
obtain a bean’s feature (property, method
and event) descriptions. If the bean author
doesn’t provide any information about
properties (or other features) in the Bean-
Info class, the introspection process uses
the low-level reflection API (java.lang-
.reflect and java.lang.Class) to obtain it.

Using these APIs, it probes the bean class
to obtain its fields and methods, then
deduces a bean’s feature descriptions by
matching the method signatures with the
naming conventions defined by the Java-
Beans specs.

The naming conventions for properties
define the signatures for setter and getter
methods. The former sets the property and
the latter reads it. Here is a naming conven-
tion defined for a simple property:

JDJ FEATURE

by Lawrence Rodrigues

Overcome the limitations of the property sheet
by building a special-purpose customizer

15VOLUME: 4 ISSUE: 5 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

• The setter method:
public void set<PropertyName>(PropertyType t)

• The getter method:
public <Property Type> get<PropertyName) {}

The following example shows the setter and
getter methods for the Graph Color property:

public void setGraphColor(Color color){//code }

public Color getGraphColor(){// code}

The other types of properties, which
include indexed and boolean, have similar
naming conventions.

Editing Properties
Once the builder tool obtains the expos-

able properties, it creates a suitable edit
field for each one. For example, the edit
field for the plotTitle property in the Pie
Chart bean is a text field (TextField or
JTextField). Text fields are adequate as
long as a property is simple, that is, of Java
primitive type (short, int, byte, char, etc.).
When a property is of enumerated type,
the property sheets typically provide
combo boxes (Choice in AWT; JComboBox
in JFC).

To edit a property, each property type
needs to be associated with a property edi-
tor. For simple properties, a property value
can be expressed as a text string. The prop-
erty editor converts the property value
obtained from the bean to a text string so
as to display it in the text field. When the
user inputs a value in the text field, it con-
verts the inputted text string to the corre-
sponding primitive type.

When you start writing real-world beans,
you’ll realize that Java primitive types aren’t
always adequate to represent different types
of bean attributes. Take the background and
foreground colors in the Pie Chart bean, for
example. In this case the property type is
Color, which is a class in the AWT. You can’t
enter a color name in the edit field because

the text type property editor can’t convert a
color name to a Color object. What you need
is a special property editor that does this
conversion. Builder tools often provide cus-
tom-written property editors for commonly
used properties such as Font and Color. If
the property type is a class defined by the
bean author, then she/he needs to write a
property editor for that class.

Property Sheet Limitations

While the property sheet concept is a
vast improvement over manual customiza-
tion (through programming), it’s inade-
quate to customize complex beans. Here
are some limitations:
• Bean authors can’t choose the GUI com-

ponents they like for editing properties.
Consider the Pie Chart bean example
again. Let’s say you want to move the pie
to the right. You can do so by entering a
value in the Pie Center X Increment field.
It’s hard to guess the right increment the
first time. Before you get the pie position
right, you typically enter the increment
values a few times. For this kind of oper-
ation you’d probably prefer a different
component to move the pie.

• Property sheets are static. Edit fields for
properties can’t be added to or removed
from the sheet depending on the value
entered in another edit field.

• Notice that the property sheet for the Pie
Chart bean displays its properties in a
random order. Before you start editing
the properties, you may have to mentally
group the properties along the functional
lines. This problem gets worse when
there are a large number of properties.
Imagine a bean that has more than a hun-
dred properties – not uncommon in com-
plex beans. You’d have to scroll the prop-
erty sheet many times to get an overall
picture. Even with the Pie Chart bean,
which has fewer properties, customizing
is easier when properties are grouped
together.

• It’s not always easy to capture the seman-
tics of the customization process just by
looking at the property sheet. Sometimes
the process may require properties to be
entered in a certain order.

• You often have to configure a bean at run-
time. But property sheets are available at
design time only because a builder tool is
needed to construct the sheet.

Customizers
The JavaBeans model provides an alter-

native to property sheets. It specifies an
interface called Customizer to enable bean
authors to implement a bean-specific cus-
tomizer. Such a customizer can be a simple
panel with related properties grouped
together or a sophisticated wizard that
allows the user to navigate through a hier-
archy of screens. Since builder tools recog-
nize any customizer that implements the
Customizer interface, it can be launched
from any builder tool that has the bean
installed.

Customizer Interface
The Customizer interface is simple and

has only three methods:
1. setObject(Object bean): The builder

Java DEVELOPER’S JournalJava DEVELOPER’S Journal16 • VOLUME: 4 ISSUE: 5 1999 http://www.JavaDevelopersJournal.com

tool calls this method to pass the target
bean instance to the customizer. It is
called only once, which is before the
builder tool launches the customizer.

2. addPropertyChangeListener(Property-
ChangeListener listener): This method
adds a propertyChange event listener. By
registering as a listener, the target
object(s) (typically the builder tool and
property sheet at design time or bean or
bean context at runtime) can receive
notification and the modified value of the
property. When the target object receives
a propertyChange event, it retrieves the
setter Method object and the property
value from the PropertyChangeEvent
object. Using this Method object and the
property value, the target object then
invokes the setter method in the bean to
modify the property.

3. removePropertyChangeListener (Prop-
ertyChangeListener listener): This re-
moves a property change event listener.

Builder Tool Interaction
To run the customizer at design time,

the builder tool first fetches the customizer
class from the BeanInfo class associated
with a bean. Using the customizer class, it
creates an instance of the customizer
object by calling the newInstance()
method. The builder tool then embeds the
customizer object in a dialog box and
launches it.

Before the builder tool launches a cus-
tomizer, it calls the setObject(Object bean)
method in the customizer object and pass-
es the bean instance as the parameter. It
also registers for the propertyChange
events. The customizer has to fire these
events whenever a property is modified.
When the customizer fires the event, it
sends the new property value encapsulated
in the PropertyChangeEvent object.

Designing Customizers
Choosing the right graphical user inter-

face for presenting and editing properties is
an important part of the design. Besides
being user-friendly and interactive, the GUI
should capture the semantics of customiza-
tion. In other words, it should be intuitive
for a user to start using it just by looking at
the GUI.

If you intend to provide a customizer for
your bean, start the customizer design
while you’re designing the bean itself.
Design your bean’s properties to be com-
patible with the customizer GUI you have in
mind. For example, I wanted to have “+” and
“-” buttons to increment and decrement the
pie size in the Pie Chart bean (see Figure 3).
I originally intended to have just one prop-
erty, Pie Diameter, to represent the pie size.
In order to develop a more interactive cus-

tomizer GUI, I created one more property,
Pie Diameter Increment, to represent the
increments or decrements relative to Pie
Diameter. Thus, when you click the “+” but-
ton, the pie diameter is incremented by a
certain amount. Likewise, when you click
the “-” button, it is decremented by the
same amount. With the Pie Position proper-
ty, I added two more properties: Pie Posi-
tion X Increment and Pie Position Y Incre-

ment to represent the increments (decre-
ments) to the pie position in X direction
and Y direction, respectively.

Figure 3 shows the Pie Chart bean cus-
tomizer, which provides a better graphical
interface compared to its property sheet.
You can adjust the size and position of the
pie smoothly by clicking the “+” and “-”
buttons. Similarly, you can adjust the posi-
tion of the legend by clicking the appropri-
ate “+” and “-” buttons.

Implementing a Customizer
Once you design the customizer GUI,

implementing the customizer class is just a
matter of writing the code for the user
interface and reading/writing properties.
Building a sophisticated customizer may
require a lot of programming, but you can
develop it in such a way that most of the
code can be reused.

A customizer class has to meet the fol-
lowing requirements to enable builder tools
to launch it:
1. It must implement the Customizer

interface. This is to enable the builder
tool to recognize the customizer and to
obtain the bean instance, which can be
passed on to the customizer. Using this
bean instance, the customizer can fetch
and modify a bean’s properties.

2. It has to be a subclass (direct or
derived) of the java.awt.Component
class. This is to enable builder tools to
embed the customizer in a dialog box.

3. It must have a constructor with no
arguments. This is to enable the builder
tool to launch it. If constructors with
arguments are allowed, builder tools
wouldn’t know which constructor to call
(in case there are many) or what values
to pass as parameters.

The customizer UI will have different
types of GUI components depending on your
design. The event-handling code for these
components should fetch and set property
values. Since the customizer object gets the
bean instance, it can directly call any public
methods in the bean. This means that the
customizer can directly invoke the getter
and setter method to get and set a property
in the bean. While you can build a customiz-
er easily this way, it’s not a good solution for
the following reasons:
• Property changes in the customizer

aren’t reflected in the property sheet. In
the majority of bean builder tools, when
the customizer is launched, the property
sheet doesn’t go away. Changes made to
the property in the customizer have to be
reflected in the property sheet as well
because the customizer can’t access the
property sheet directly.

• Code isn’t reusable because getter and

Figure 1: The Pie Chart bean

Figure 2: The Pie Chart bean property sheet

Figure 3: The Pie Chart bean customizer

17VOLUME: 4 ISSUE: 5 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

KL Group
www.klgroup.com

http://www.JavaDevelopersJournal.comJava DEVELOPER’S Journal18 • VOLUME: 4 ISSUE: 5 1999

setter methods are used explicitly.
• Code may require maintenance as you

may need to change it in a number of
places if a property name or type changes.

An appropriate solution would be to use
the reflection API to obtain the getter and set-
ter methods of a property and fire the prop-
ertyChange events to set its value. The Pie
Chart bean customizer uses this approach.

Pie Chart Customizer
The Pie Chart bean is part of a plotter

bean suite. The other beans in this suite
include XY Plot, Histogram, Line Chart and
Bar Chart beans. The plotter bean cus-
tomizers have many similarities. To capture
the behavior common to all the chart bean
customizers, I developed two common
classes: CustomizerImpl and Custom-
izerUtil. The former implements the Cus-
tomizer interface and the latter has a num-
ber of factory methods that create edit
fields for different types of properties. The
Pie Chart bean customizer class extends
the CustomizerImpl class and uses the
methods in CustomizerUtil class. The same
is true for other plotter beans.

CustomizerImpl Class
As mentioned before, the customizer

component is expected to be contained in a
dialog box, so a customizer class can’t be a
subclass of Frame (JFrame) or Dialog (JDia-
log). Furthermore, the customizer class
should be a container because it needs to
house a number of components for editing.
The logical choice would be to subclass
Panel (JPanel). The CustomizerImpl class
shown in Listing 1 does just that. It extends
JPanel and implements the Customizer
interface.

As the listing shows, the CustomizerImpl
class has three instance variables:
1. bean: Holds the target bean instance.

Since the setObject() method is called
only once, this variable saves the bean
instance.

2. pcs: Holds the PropertyChangeSupport
instance. The propertyChange event reg-
istration methods call the corresponding
methods in pcs.

3. title: Holds the customizer title. The
addNotify() method, which is called only
when the component receives a parent,
sets the customizer title in the parent.

The instance variables, bean and pcs,
are set in the setObject() method. The cre-
ateGUI() method creates the GUI compo-
nents and is called only after the target
bean instance is received. It is an abstract
method, which means that subclasses of
CustomizerImpl provide the actual code.

CustomizerUtil Class
The CustomizerUtil class has a number

of utility methods that help to create edit
field components, which include JTextField
and JComboBox. This class uses the reflec-
tion API to get and set a property value.

As an example, see Listing 2, which
shows the createJTextField() method. This
method first constructs a JTextField com-
ponent. It then obtains the actual property
value from the bean by calling the getProp-
erty() method (see Listing 3). Using the
property name string, getProperty()
method first constructs the Method object
for the property’s getter method. The
Method object executes invoke() to invoke
the getter method.

The createJTextField() method also has
the code to set the property. When the user
types a value and hits Enter, the JTextField
fires an action event. To handle this event,
createJTextField() registers with the JText-
Field to receive action events. The event-
handling code for the action event is in an
anonymous class in which the actionPer-
formed() method first fetches the text
entered by the user from the JTextField and
converts the value to an appropriate object.
It then calls the firePropertyChangeEvent()
method in pcs.

Listing 4 shows the code to create “+”
and “-” buttons for incrementing and decre-
menting a property. This method uses a
highly reusable class, IncrButtonAdapter,
which is an adapter class for the action
event (see Listing 5). An IncrButtonAdapter
instance is constructed for each button. The
property name and increment intervals are
passed as arguments to this constructor.
The actionPerformed() method, which is
called whenever the increment button is
clicked, first fetches the property value
from the bean, then adds the increment to
this value and calls the fireProperty-
ChangeEvent() in pcs. The IncrButton-
Adapter class is used by pie and legend
properties in the Pie Chart bean customizer.

PieChartCustomizer Class
Listing 6 shows part of the PieChartCus-

tomizer class, which extends the Customiz-
erImpl class. It overrides the createGUI()
method, which calls createLabelsPanel()
and createColorPanel() methods to create
labels and color panels. It also calls the cre-
ateIncrPanel() method to create increment
panels for pies and legends. As you can see
from the listing, these methods call static
methods in the CustomizerUtil class to cre-
ate components for editing.

Registering the Customizer
The customizer has to be registered for the

builder tool to launch it. The BeanDescriptor
class is the only class that holds the cus-
tomizer class. You can set the customizer
class by using one of its constructors. The
BeanDescriptor class has two constructors:
• BeanDescriptor(Class beanClass)
• BeanDescriptor(Class beanClass, Class

customizerClass)

The second constructor is used to regis-
ter the customizer. If you use the first con-
structor, the builder tool assumes that the
bean has no customizer. The code to register
the customizer goes in the BeanInfo class.
The example below shows how the Pie Chart
bean customizer is registered. This code is
taken from the PieChartBeanInfo class.

public BeanDescriptor getBeanDescriptor(){

BeanDescriptor bd = new

BeanDescriptor(PieChart.class, PieChartCustomiz-

er.class);

// Other stuff

return bd;

}

A bean’s own BeanInfo class is the only
place where you can register a customizer.
This means that building a BeanInfo class
for that bean class is a must. This is
because builder tools won’t recognize the
customizer even if the customizer is regis-

Figure 4: The Graphics Viewport bean

Figure 5: The Graphics Viewport bean customizer

19VOLUME: 4 ISSUE: 5 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Object Domain
www.objectdomain.com

http://www.JavaDevelopersJournal.comJava DEVELOPER’S Journal • VOLUME: 4 ISSUE: 5 1999

tered in a bean’s superclass BeanInfo.

Customizer at Runtime
Although the availability of customizers

at runtime is often desirable, the JavaBeans
specification makes no mention of runtime
customizers. You can provide this facility,
however, by adding a few more methods to
your bean. The program that launches the
customizer can reside in the bean itself or
in the bean context (container).

To launch the customizer, you can use
the button, pop-up menu or any suitable
component depending on your bean and the
application. The Graphics Viewport bean
shown in Figure 4 provides a pop-up menu
that can be triggered by right-clicking. (You
can download this bean from my Web site at
www.execpc.com/~larryhr/gvbean.html and
use it to draw a variety of shapes and text.)
This menu contains the items customize and
serialize.

The customizer class itself is a property in
the Graphics Viewport bean. This means that
the class can be set by the setter method and
fetched by the getter method. The bean con-
text or application that uses the Graphics
Viewport bean can call these methods to reg-
ister and launch the customizer.

Listing 7 shows the event-handling code
(which is in the Graphics Viewport bean
itself) for the Customize menu item. As you
can see, the actionPerformed() method
first fetches the customizer class and pass-
es it as a parameter to launchCustomizer()
to launch the customizer.

Launching the Customizer
Listing 8 shows the launchCustomizer()

method, which:
1. Creates an instance of the customizer

object
2. Calls setObject() method to pass the

bean instance to the customizer
3. Registers for the propertyChange event

In the event-handling method it retrieves
the property values from the Property-
ChangeEvent object and calls the setProper-
ty() method (see Listing 9). This method uses
the Method class to invoke the setter method.

Bean as a Standalone Application
Figure 5 shows the customizer for the

Graphics Viewport bean. This customizer is
much more comprehensive than the Pie Chart
customizer. With it you can set the drawing
parameters and also draw shapes and text.
Since this customizer can be launched at run-
time, you can use the Graphics Viewport bean
as a standalone application.

To make a bean run as a standalone appli-
cation, you need to add the main() method.
Starting with Java 2, a JAR file can be made
executable. This means that you can run a

bean that has the main() method by executing
its JAR file. For example, to run the Graphics
Viewport bean, just type java -jar grbean.jar.

To make a JAR executable, you need to
include an attribute called Main-Class in the
JAR manifest file. Following is the example
from the grbean.jar manifest file.

Main-Class: com.vistech.viewport.GraphicsViewport

Name:

com/vistech/viewport/GraphicsViewport.class

Java-Bean: True

This brings up another issue: Should the
runtime and design-time customizers be
the same? There is nothing to prevent you
from having two customizers – one for
design time and one for runtime. You can
use the same Customizer interface to imple-
ment these customizers.

Conclusion
Property sheets are simple and don’t

require a lot of programming effort. They’re
inadequate, however, when beans are com-
plex and have a large number of properties.
We can overcome most of the limitations of
the property sheet by building a special-
purpose customizer. The Customizer inter-
face is a simple but powerful API that can
be used to develop user-friendly customiz-
ers to configure complicated beans. Howev-
er, writing a good customizer requires a lot
of programming effort. Unlike property edi-
tors, which are property specific, a cus-
tomizer is specific to a bean. So if you make
changes to the target bean, you may have
to modify the customizer as well.

References
1. Rodrigues, L. (1998). The Awesome Power

of JavaBeans. Manning Publications.
2. Sun Microsystems, JavaBeans API Specifi-

cation Version 1.01, July 1997.
3. Rodrigues, L. (1997). “Java, The Next Gen-

eration: JavaBeans.” Java Developer’s
Journal, Vol. 2, Issue 1, January.

About the Author

Lawrence Rodrigues, author of The Awesome Power
of Java Beans, is the lead architect at a large
industrial automation company. You can reach him
through his “Bean man’s home page” at
www.execpc.com/~larryhr or via e-mail at
larryhr@execpc.com.

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

larryhr@execpc.com

GET
YOUR
OWN!

GET
YOUR
OWN!

GET
YOUR
OWN!

$3999one
year

two
years

$6999

1800-513-7111
$69 one year Canada/Mexico

$99 one year all other countries

12 issues

24 issues

or subscribe online for faster service
subscribe@sys-con.com

Subscribe today and receive
“JDJ Digital Edition” FREE!

save
$30!
save
$10!

21VOLUME: 4 ISSUE: 5 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Flashline
www.flashline.com

22 • VOLUME: 4 ISSUE: 5 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Hello, and welcome to electronic Java! In
this column we’ll examine the role of Java in
the fast-growing world of electronic com-
merce. We’ll also look at how the different
components of the Java 2 Platform fit togeth-
er to create complete enterprise-level e-com-
merce applications. This column will also
focus on how these technologies relate to the
world of Java and vice versa.

Before we get into the specifics of how
Java contributes to the world of e-com-
merce, I’d like to set the stage by briefly
introducing e-commerce and how it relates
to the Internet. Of course, once we get to
the Internet, Java’s presence is inevitable;
as far as Java and the Internet are con-
cerned, when one is present, the role of the
other is more or less taken for granted.

E-Commerce and Internet
Commerce

E-commerce may be defined as a
method of doing business “electronically.”
This isn’t a new concept. For example, EDI
has been the main means of conducting
business electronically for several years
now. What has made a difference in the past
few years is the phenomenal growth of the
Internet, leading to a revolution in the way
business can be conducted electronically.
Internet commerce is the new, next-genera-
tion, “revolutionize the world as we see it
today,” whizbang phenomenon that is cur-
rently in the process of taking the world by
storm. Business surveys estimate that e-
commerce–based business will grow to well
over a trillion dollars by the year 2002.

In the context of business transactions,
Internet commerce is a part of e-commerce
that refers to the use of the global Internet for
purchase and sale of goods and services. It
can be categorized as two types of business-
es. The first allows the end customer (the
buyer or purchaser) to interact in the trans-
action by directly buying/ordering goods on

the Internet. This necessitates a highly inter-
active user interface on the client-side archi-
tecture used to implement the features of
Internet commerce. In the second type, busi-
nesses conduct transactions without the
involvement of the end users. One business
plays the role of purchaser; the other, the role
of the seller. Please note that when I mention
e-commerce in the discussions offered in this
column, I refer to Internet commerce, since
Java is primarily applied in the areas of Inter-

net commerce. The development efforts in
the e-commerce market today are focused
mainly on two fronts:
• E-commerce application development:

Parties involved in this kind of develop-
ment are using current technologies and
frameworks to develop and deploy
e-commerce alternatives to current busi-
nesses.

• Development of e-commerce–enabling
frameworks: Parties involved in this
kind of development are using compati-
ble enabling technologies to develop
frameworks that can be used to build
e-commerce applications.

Putting together enterprise-level frame-
works or applications for enabling com-
merce on the Internet involves design and

E-COMMERCE

Electronic Java
Java – working hand in glove with other
computing technologies to offer business

solutions in the world of e-commerce
by Ajit Sagar

Java Technology Description Role in E-Commerce
Java Applets Programs written in the Java Adds dynamism and higher

programming language that can be interactivity to Web pages for
included in an HTML page. The facilitating online purchasing.
applet's code is downloaded to the
client and executed by the browser.

Java Wallet A client-side architecture designed to Offers a framework for performing
bring together pluggable commerce purchasing, banking, and
components to enable complex and finance-related transactions.
secure online transactions in a
platform-independent manner.

Enterprise Java- Provides access to a core set of system Encapsulates transactional and
Beans (EJBs) services for developing enterprise-level business logic for e-commerce

multitier application systems for high- transactions.
volume business transactions

Java Database Provides connectivity to existing Enables database-independent
Connectivity (JDBC) relational databases. access to data sources.

Remote Method Enables the creation of distributed Java- Enables invocation of remote
Invocation (RMI) to-Java applications in which the methods e-commerce related services

of remote Java objects can be invoked across different tiers of the
from other Java Virtual Machines, architecture.
possibly on different hosts.

Java Servlets Allows server-side Java programs to Allows access to server-side
and Java Server run with any major Web server and operations and services without
Pages (JSPs) thus supports the middleware layers of compromising security constraints.

the enterprise. A more efficient alternative to
CGI-based services.

Java Security A base infrastructure that ensures the Ensures security in e-commerce
privacy and consistency of data across transactions.
the tiers of a Java-based architecture.

Table 1: Technologies that can be applied to e-commerce

23VOLUME: 4 ISSUE: 5 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Object International
www.oi.com

24 • VOLUME: 4 ISSUE: 5 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

integration of various technologies that play
specific roles in a distributed computing
environment. A distributed topology is a pre-
requisite for building such applications
since the Internet is inherently distributed in
nature. A distributed architecture, especially
in the realm of electronic commerce, places
higher demands on connectivity, security,
reliability, robustness and scalability than
do applications in other areas of computing.

Java and E-Commerce
So what role can Java play in the world

of electronic commerce? Before answering
that question, let’s refresh our minds with
the original goals of the Java Platform. The
authors of Java used the following buzz-
words to define the features offered by Java
– simple, object-oriented, distributed, robust,
secure, architecture-neutral, portable, inter-
preted, high performance, multithreaded,
dynamic. To date Java has proved most of
these descriptors accurate. Also, Sun
Microsystems and other industry partners
that influenced the evolution of the Java
Platform are working hard to make sure
that Java meets the expectations of the
industry regarding features that are not yet
satisfactory (e.g., performance).

Of the 11 buzzwords, the ones that have
a direct bearing on the world of Internet
commerce are:

• Distributed: As mentioned earlier, Inter-
net commerce implies a distributed
nature. Transactions on the Internet may
take place across several tiers of a dis-
tributed architecture. The Java Platform
and its APIs provide a high degree of sup-
port for distributed architectures.

• Robust: Buying and selling goods or ser-
vices on the Internet requires robust ser-
vices. Lack of trust in transactions can
make the difference between people
accepting e-commerce channels over tra-
ditional commerce channels.

• Secure: Security is perhaps the first
thing that comes to mind when parties
conduct transactions over the Web since
the data transferred over the Internet is
over public channels. Java provides an
extremely secure base infrastructure that
ensures security in Internet transactions.

• Architecture-neutral: The fact that soft-
ware developed in Java is architecture-
neutral is the most important reason for
its being particularly well-suited to net-
worked environments, since networks
(especially the Internet) typically inter-
connect heterogeneous platforms that
must work together despite their under-
lying differences.

Java also provides a rich set of APIs that
facilitate building networked applications,
particularly for the World Wide Web. This is
why Java has become the enabling technolo-
gy for building interoperable, distributed
Web applications. Commerce, by definition,
involves relationships between multiple par-
ticipants, as opposed to transactions
between individuals. As such, when business
is conducted over the Web, it’s to the advan-
tage of all parties involved to overcome
underlying differences in their respective
computing platforms, to concentrate on buy-
ing and selling, not on whether they’re using
compatible operating systems. For this rea-
son, Java is well-suited to being an enabling
context for Web-based commerce, paving the
way for business on the Internet. At the same
time, for the end user, Java-based commerce-

enabled Web pages can bring a greater
degree of interactivity and responsiveness to
a buyer’s shopping experience.

Java Technologies for E-Commerce
The Java Platform offers several tech-

nologies that can be applied in the world of
electronic commerce. Some are listed in
Table 1. Figure 1 illustrates how each of
these technologies fits into an n-tier e-com-
merce application. Note that the different
technologies occupy specific roles in each
tier of the architecture.

Other Technologies
The Java Platform offers many compo-

nents that will contribute to the successful
conduct of business on the Internet. However,
it won’t provide all the pieces necessary to
make e-commerce a success. Other technolo-
gies are competing with the solutions offered
by Java, trying to ensure their place in the
world of e-commerce. At the same time, Java
needs to integrate with supplementary tech-
nologies to provide viable solutions in the e-
commerce market. Providing the technologi-
cal answers solves only part of the problem.
Integrating with existing and legacy technolo-
gies is imperative for providing feasible solu-
tions for the market. Some existing technolo-
gies include payment and ordering systems,
EDI, modules implemented in legacy pro-
gramming languages and so on. Prominent
among emerging technologies are new securi-
ty paradigms, non-Java commerce frame-
works and XML (Extended Markup Lan-
guage). We’ll discuss these technologies and
considerations in future columns.

About the Author
Ajit Sagar is a member of the technical staff at i2
Technologies in Dallas, Texas. He holds a BS in
electrical engineering from BITS Pilani, India, and
an MS in computer science from Mississippi State
University. He is a Java certified programmer with
eight years of programming experience, including
two in Java.

Java Servlets

Applets

JSPWeb
Server

EJB
App Server

Java Security

HTTP
HTTPS

JDBC
RMI

Web
Server
Web

Server

Java
Wallet

Client
App

Data Source

Services

Client tier Middle tiers Data tier

Figure 1: The role of Java technologies in a distributed n-tier architecture

Ajit_Sagar@i2.com

Subscribe Today
and receive the

“CFDJ Digital Edition”
FREE

Subscribe Today
and receive the

“CFDJ Digital Edition”
FREE
at www.COLDFUSIONJOURNAL.com

1800-513-7111
or subscribe online for faster service
subscribe@sys-con.comG

E
T

Y
O

U
R

 O
W

N
!

25VOLUME: 4 ISSUE: 5 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Titestone
www.tidestone.com

26 • VOLUME: 4 ISSUE: 5 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Is it me, or are the months flying past? It
seems like only last week I was sitting down
writing this column, hoping to bring a little
happiness into your lives. This month, fortu-
nately, I have a lot to tell you about the won-
derful world of Java as seen through the
eyes of a European CEO. But let’s not get into
the heavy stuff just yet. This column is like
getting to work in the mornings: you don’t
just rush straight into it; you go and make a
cup of coffee, you relax, you allow your heart
rate to return to normal after the road-war
you had to go through to get here. Hoping
you don’t meet that wee old lady who insist-
ed on driving 25 mph in front of you the
whole way to work. Hell, you deserve a rest.
So if this column is coming to you on a Mon-
day morning or some other stressful morn-
ing, then let’s ease into it together, gently.

Stress is a funny thing. It affects us all in
different ways. I’m one of the lucky ones that
don’t suffer from stress. There’s never much
point in losing sleep over a problem; it’ll still
be there in the morning so you may as well
get a good night’s rest! May sound a bit over-
simplified, but let’s face it: it’s when you’re
panicky or stressful that you make those
absolutely monumental blunders. Your deci-
sion-making process is a little cloudy and
you can’t see the forest for the trees. Life is
a gas, and we should all learn not to take
things so seriously. They’re not that compli-
cated. We merely shroud them in buzzwords
and technical phrases to ensure that not
everyone knows what we’re talking about.
It’s how we protect our jobs. The IT industry
isn’t the only one that plays this game;
everyone is at it. But should it be like this?

I guess not. But now that we’re settled,
let’s start work.…Well, let me start work. I
have to write this column; you merely have
to read it.

This was one of those months that could
have proved extremely stressful if we had
let things get out of hand. Have you ever
built a system that you completely under-
estimated the success of? You never
thought that particular class or method
would be used quite as much as that. Well,
this was only one of the things we had to
contend with this month.

Popularity
As you may remember, some months

ago we launched the system we’ve been
working on to provide a free Web-based e-
mail and newsgroup system, www.LiquidIn-
formation.net. The growth of the system
was something that took us all aback. We
were signing up 300 new users a day, with
around 40% daily usage from all of them.
The system was being well stress tested. As
you know, it was running on one Sun Solaris
station with Oracle8 as the back-end data-
base.

For up to around 3,000 users the system
ran very well. Response from the Web site
was fast. Sending and receiving e-mail was
reliable and secure. When we topped 4,000
users, however, a different story evolved.
Last month, remember, I ranted about the
joys the JAR file brought to us. Well, this
month I have an equally joyous rant to
bring to you.

We couldn’t understand why suddenly
everything started to grind to a halt. With
around 4,000 users we were holding around
30,000 e-mails. It was one of those situa-
tions where in attempting to locate the crux
of the problem we discovered so many little
anomalies on the way. For example, our
mail server was a Java application that lis-
tened for requests on port 25 and
processed incoming mail, rejecting
unknown users, etc. But the log files started
throwing up a rather strange error,
java.lang.OutOfMemory. We spent ages try-
ing to get to the root of it.

At first we upped the memory the virtual
machine was starting out with, but that fixed

the symptom, not the problem. Sure enough,
it came back…suspiciously quick. So our
mail server was crashing within 10 minutes
of operation with memory problems. What
could it be? The log files pointed toward the
readLine(...) method from the BufferedRead-
er class. Maybe there’s a mail server hell-
bent on sending us a line of a mail message
that isn’t terminated around the 80-charac-
ter mark. Maybe that’s overflowing the mem-
ory for the String class. At this point it was
the best lead we had, but the problem still
persisted after we wrote our own read-
Line(...) method to return a line no greater
than 80 characters. We noted, however, a
number of mail servers that never respected
the 80-character rule of thumb, so this did
indeed need addressing.

But the memory problem was still there.
What could be taking away all the memory
in such a short space of time? A spammer.
We were being flooded with return e-mails
from AOL where someone had put the
return address of one of the users in Liquid.
Our system permits only 10 originating e-
mails per user per day, so we knew he was-
n’t using Liquid to spam thousands of
users, but he was using our system as his
return e-mail.

What happened was we forgot to limit
the number of concurrent sessions our e-
mail server could handle. AOL got a little
excited and opened up in excess of 100 ses-
sions with our mail server in an attempt to
download all these return e-mails. That’s
what it was. The virtual machine couldn’t
handle the sudden stress of having to
spawn over 100 threads and do all the nec-
essary string handling. As soon as we built
a throttling mechanism into the system to
handle at most only 20 or 30 sessions at
once, the problem never raised its ugly
head again.

Phew! Thank goodness that was sorted
out. But it never really solved the problem
on the Web site. A major slowdown was still
being experienced.

Looking at the load on the processor, we
could see that Oracle was soaking up the
majority of the CPU cycles. But why? The
total size of the database was only around 80
MB, and we understood Oracle could handle
far greater sizes than this. Granted, one of
our tables had over a million rows in it but
still we thought Oracle could handle it.

Forget Stress – Life is a Gas...

STRAIGHT TALKING

Unless you let things get out of hand
by Alan Williamson

27VOLUME: 4 ISSUE: 5 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Developmentor
www.develop.com

28 Java DEVELOPER’S Journal • VOLUME: 4 ISSUE: 5 1999 http://www.JavaDevelopersJournal.com

We have our own in-house connection
pool manager that does a whole host of
housekeeping routines and ensures a safe
and reliable database operation. This man-
ager was reporting that each query was tak-
ing two to three seconds to complete. No
wonder the Web site was grinding to a halt!
So what was Oracle doing with its time?

First of all, we rationalized the table that
had over a million rows and this indeed
improved the situation. But things were still
slow. We looked closely at all the settings
Oracle had and nothing too untoward was
popping up. Next we looked at our table
design.

Guess what it was? We had forgotten to
allocate a primary key to one of the main
tables. Duh! Talk about kicking yourself in
the butt and rolling your eyes. When we
rebuilt the table with a primary key, what a
difference it made! Speed was regained and
operation was smooth.

This was a classic case of bugs or smaller
issues not being a problem in a test or low-
volume environment, but when deployed in
a high-transaction environment it simply
failed. We had taken the time to test all our
classes and ensure all exceptions and errors
were reported, etc., but neglected to look
closely at the other parts of the system.

Farming
As the user base grew, the need for a

second machine to support the overall sys-
tem soon became apparent. We toyed with
a number of different configurations. We
looked at how the larger sites operate –
Amazon, Dell and the Internet Movie data-
bases. These are all high-volume sites and
lots could be learned from them. Ironically,
each of them employed completely differ-
ent ways of handling large volumes of
users, with no one solution shining through
as the perfect way to handle it.

The first thing that had to be replaced
was the Web server. The one we had
employed was simply not up to the task. We
had the Java Web Server running, handling
all our servlet and static file requests. It
was using more and more time to process
requests. We also noticed it had a tendency
to simply hang or freeze after a prolonged
period of time. We put this down to more of
the virtual machine as opposed to the Web
server itself, but we couldn’t confirm or
deny this. The mail server was up equally
as much and it didn’t freeze or hang. A new
Web server was required, one that support-
ed servlets.

We looked at Netscape and seriously
thought of deploying this solution. But two
things put us off: the handling of servlets,
which would have to be performed by a
third-party vendor, and the cost. Which
leads me to a wee aside.

Don’t you think the Internet has spoiled
us somewhat? With the quality of free soft-
ware that’s available, when a product that
does charge comes along it really has to
justify its existence. A number of months
ago I talked about the real costs of owning
a Sun station as opposed to a Linux box,
and the feedback I got from you all on this
suggested we weren’t the only company to
realize this. Which makes sense if you think
about it. If it didn’t, then Linux wouldn’t be
gathering the popularity it is at the
moment. It makes it harder for companies
to make money on the Internet if they’re
expected to give a certain amount of their
crown jewels away in order to gain popu-
larity. It’s a worryingly unclear future for
product companies, and one we here at n-
ary are addressing sooner rather than later.
I think we’ll come back to this next month.

If I asked you to name the most popular
free Web server, I’d bet $1,000 that 99% of
you would shout back “Apache!” And it’s
Apache we turned to. We downloaded it,
installed and configured the servlet mod-
ule, and were up and serving requests with-
in two hours. A truly remarkable piece of
software, and for this I take my hat off to
the Apache team and publicly congratulate
them on a job well done.

Apache did as fine a job of serving the
same level of requests as the Java Web
Server, but didn’t take up as many process-
ing cycles. Which concerns me a little. We
in the Java world are trying to promote the
use of Java and get it into the high-transac-
tion environments, and here we are, a lead-
ing Java servlet company, dropping a Java
product in favor of a more robust, platform-
independent solution. We ask forgiveness
from the Java community for this act of

Judas, but we had a job to do, and Apache
was the man for the job. Nothing would
have given us more pleasure than to proud-
ly announce a complete Java solution, but
sadly it wasn’t to be. Our database is Oracle
and our Web server is Apache. but all our
code is Java!

Next month I’ll take you into the won-
derful world of databases for Linux as we
build up our server farm. And I promise
you, I can save you money in this field too.
Our eyes were well and truly opened, and I
wish to share this wondrous sight with you
all. But more next month.

N-ary Poll
Last month we asked you on our main

Web site (www.n-ary.com) if you felt Java
applets were still slow to execute. The poll
ended with a resounding 77% of you indi-
cating that applets were still slow. This is a
very interesting result and we can see that
virtual machine developers still have a long
way to go to improve the reputation of
Java’s speed. We’ll watch this one carefully
and possibly redo the poll in six months to
see if the situation has improved.

This month we’re asking if you’ve looked
at deploying a Java servlet solution as
opposed to a Microsoft ASP or CGI solution.
The results are encouraging, with 75% of
the votes showing a swing toward servlets.
It’s good to see Java servlets becoming a
viable solution to you all. Next month I’ll
report the final findings.

I’ve run out of space for the book review.
So please accept my apologies and I’ll
ensure it gets in next month. But I’d like to
thank all of you that have signed up on the
mailing list that accompanies this column.
It’s proving to be a much better way to dis-
cuss issues that are raised here, so if you’re
up for some stimulating conversation, then
come along. See our main Web site for
details.

On that note, I’ll look forward to hearing
from you, and prepare myself for the haz-
ardous drive home. Fortunately for me, as
we’re situated in the lowlands of Scotland,
rush hour consists of making sure you get
past the farm before the farmer drives the
cows along the single-track road for milking.

And you think you have problems!

About the Author
Alan Williamson is CEO of n-ary ltd. A Java

consultancy company with offices in Scotland,
England and Australia, they specialize solely in
Java at the server side. Alan is the author of two
Java Servlet books and contributed to the 2.1
Servlet API. He can be reached at alan@n-ary.com
(www.n-ary.com) and welcomes all suggestions
and comments.

alan@n-ary.com

“ The first thing
that had to be
replaced was

the Web server.
The one we had
employed was
simply not up

to the task.”

http://www.JavaDevelopersJournal.com 29Java DEVELOPER’S JournalVOLUME: 4 ISSUE: 5 1999 •

Riverton
www.riverton.com

30 Java DEVELOPER’S Journal • VOLUME: 4 ISSUE: 5 1999 http://www.JavaDevelopersJournal.com

Now that Swing (a k a JFC) has been offi-
cially released, an abundance of electronic
and print material is available to serve as
both tutorial and reference. The problem
with the books and articles I’ve seen thus far
is that they devote the same amount of space
to each Swing component. For example, sim-
ple controls such as JLabel and JButton have
as much (relatively) written about them as is
written about more complex controls like
JTree and JTable. This article attempts to rec-
tify some of the imbalance by providing an in-
depth look at the Swing JTable.

JTable uses the same Model-View-Con-
troller–type scenario that is evident through-
out Swing. If you’re unfamiliar with the MVC
paradigm, you can get a good introduction in
several places (such as the Swing Connec-
tion Web site, for instance), but the gist of
MVC is that any changes you want to make to
the data that’s displayed are made in a model
while the actual presentation of the data is
left to a view that receives the data it’s to dis-
play from the underlying model. Table 1 sum-
marizes the differences between using a non-
MVC table and a Swing JTable.

With a non-MVC component, we actually
tell the component itself to change the con-
tents of one of its cells. With the Swing
JTable, we update the underlying model for
the table (which has been previously linked
to this JTable) and then inform the JTable
that its model has been updated.

JTable Classes and Interfaces
All of the JTable-specific functionality can

be found in either the JTable class (which is
within the javax.swing package) or one of
the classes in the javax.swing.table package.
Most of your programs should import both
of these classes as follows:

import javax.swing.*;

import javax.swing.table.*;

Note: The package-naming scheme within
Swing changed for JFC version 1.1. Prior to this,
the Swing packages started with com.sun.-
java.swing. For JFC versions 1.1 and after, the
package names start with javax.swing.

When implementing a JTable in Swing, the
TableModel, TableColumnModel, TableCellEd-
itor and TableCellRenderer interfaces will be
the most important. Swing also provides some
default classes – AbstractTableModel, Default-
TableModel and DefaultColumnModel – that
already implement these interfaces.

The main classes we’ll use are the JTable,
JTableHeader and TableColumn. Figure 1
shows how these classes and interfaces
relate to one another.

Default Table Model
Often, the best way to present a detailed

concept such as a JTable is to start with an
example (see Listing 1). Figure 2 shows a
basic example of a JTable.

In this example we’re using the Default-
TableModel class (located in the java-
x.swing.table package) to implement our
table model. The DefaultTableModel class

extends the AbstractTableModel class,
which implements the TableModel interface
(as mentioned previously). This saves us
work because we don’t have to extend
AbstractTableModel ourselves, but this ease
of use comes at the expense of functionality,
as we’ll see in subsequent articles when we
implement our own table models.

There are several constructors for the
DefaultTableModel class, but I’ve chosen to
use the constructor that requires both a two-
dimensional array (for the actual data that
should be displayed in the table) and a one-
dimensional array for the column headers.
Once we create the table model, we simply
pass this table model to the constructor for
our JTable and add the JTable to the frame.

If you compile and run the code in Listing
1, you should see a JFrame similar to that in
Figure 2. Here are a few things to notice,
however, about our simple table example:
• No column headers are displayed.
• The table information is clipped at the

frame border and there are no scrollbars
showing, so we have to resize the frame in
order to see all the data.

• All cells are editable – try typing over
some of the existing data.

SWING

Meet the Swing JTable
It’s a complex control, not well documented,

but here’s some how-to information
by Michael Hatmaker

Non-MVC Table Bean
• Insert the new contents

directly into the table at
a specific row and col-
umn location

Swing JTable
• Change the contents of

the underlying table
model (for a specific
row and column)

• Inform the JTable that
the contents of its
model have changed so
it can update itself

Table 1: Non-MVC table vs Swing JTable

Figure 1: JTable classes and interfaces

Figure 2: Simple JTable Figure 3: JTable with column headers and scrollbar

AbstractTableModel

AbstractTableModel

JTable

class interface

extends implements has one has several

JTableHeader

TableColumn

JComponent

TableModel

TableColumnModel

ListSelectionModel

DefaultListSelectionModel

DefaultTableColumnModel

SYMBOLS:

Notice that the JTable and JTableHeader
classes inherit from JComponent
indicating that they are visual
components.

31Java DEVELOPER’S JournalVOLUME: 4 ISSUE: 5 1999 •http://www.JavaDevelopersJournal.com

Insignia
www.insignia.com

32 Java DEVELOPER’S Journal • VOLUME: 4 ISSUE: 5 1999 http://www.JavaDevelopersJournal.com

The first two observations we can cor-
rect by using another Swing control – a
JScrollPane. The third we’ll save for a sub-
sequent article when we look at creating
our own table model.

JScrollPane
Almost no table would be complete

without the ability to scroll through the
data items in the table. Fortunately, Swing
makes it easy for us to add this functionali-
ty; we simply insert our JTable into a
JScrollPane. With a slight modification to
our original code, we create a constructor
for a JScrollPane that takes the Component
that should be displayed within the scroll
pane as its argument. Listing 2 contains the
modified code, and Figure 3 shows the
resulting JTable.

Note: There is a bug in version 1.0.1 of the
Swing classes that won’t show the column
headers when you place a JTable inside a
JScrollPane. This problem should be fixed in
all versions of Swing 1.0.2 and above.

Placing the JTable inside a JScrollPane
has automatically displayed our column
headers and has added a vertical scrollbar.
There is no horizontal scrollbar, however.
Try resizing the frame; you’ll see that the
horizontal scrollbar won’t appear regard-
less of how narrow you make the frame.
The reason is that, by default, the autoRe-
sizeMode property of the JTable is set to
AUTO_RESIZE_ALL_COLUMNS. Table 2 lists
the valid settings for the autoResizeMode
property along with a description of each.

When you set the autoResizeMode prop-
erty to AUTO_RESIZE_OFF, the JScrollPane
containing your table may display a hori-
zontal scrollbar rather than resizing the
columns to fit the existing column widths. I
say may because whether or not a scrollbar
is actually displayed depends on the setting
of the horizontalScrollBarPolicy property
of the JScrollPane. If it is set to HORIZON-
TAL_SCROLLBAR_NEVER, for instance, no
horizontal scrollbar will be displayed
regardless of the size of the JTable the
scroll pane contains. There is also a corre-
sponding verticalScrollBarPolicy property
for a JScrollPane. Table 3 contains a list of
some of the relevant constants that can be
used for the horizontalScrollBarPolicy and
verticalScrollBarPolicy properties of the
JScrollPane.

Listing 3 contains a sample program that
makes use of the autoResizeMode property
of the JTable. It creates five different
JFrames, each containing a JTable that has a
different setting for its autoResizeMode
property. Figure 4 shows the resulting
frames. The code in Listing 4 takes the case
where the autoResizeMode is set to
AUTO_RESIZE_OFF and displays six frames,
each with a different value for the scrollbar
policy properties of the JScrollPane that
contains the JTable. This code produces the
output shown in Figure 5. Try adjusting the
table widths and the column widths in each
of these examples to see how the autoRe-
sizeMode, horizontalScrollBarPolicy and
verticalScrollBarPolicy properties function.

In Listings 3 and 4 we use a different
method to create the JTable than we have
previously. Instead of first creating an
instance of the DefaultTableModel class
based on an array of data and an array of
column headers, we simply pass the data
and column headers directly to the JTable
constructor. This essentially does the same
thing, except it bypasses entirely the cre-
ation of a table model.

In the next part of this series we’ll look
at implementing the TableModel and Table-
ColumnModel interfaces in order to
achieve maximum flexibility in our JTable
designs. Subsequent articles will reveal the
techniques behind implementing editors
and renderers for custom display and edit-
ing of your JTable data, and opportunities
for enhancing the performance of the some-
times-laggard JTable component.

About the Author
Michael Hatmaker has worked for several years as a
consultant and as an instructor at Loyola University.
He is currently specializing in Java and CORBA
development and is working on a large-scale trading
system project at a major financial exchange.

mhatmak@smartsystems.com

Figure 5: Two of the six frames showing
different settings for the scrollbar policy

properties of the JScrollPane

JTable Constant Description
AUTO_RESIZE_ALL_COLUMNS The columns are resized proportionately when the table is resized.
AUTO_RESIZE_LAST_COLUMN When a column is resized, only the width of the last column (rightmost column) is

adjusted to accommodate the new column width.
AUTO_RESIZE_NEXT_COLUMN When a column is resized, only the width of the next column (the column to the right

of the one that is resized) is adjusted.
AUTO_RESIZE_OFF The columns are not resized when the table is resized. Instead, a horizontal scrollbar

may appear (depending on the setting of the horizontalScrollBarPolicy property of the
JScrollPane that contains our table).

AUTO_RESIZE_SUBSEQUENT_COLUMNS All subsequent columns are adjusted proportionally when a column is resized.

Table 2: autoResizeMode property constants

ScrollPaneConstants constant Description
HORIZONTAL_SCROLLBAR_ALWAYS Always show a horizontal scrollbar, even if it isn’t needed (even if the compo-

nent fits fully within the visible region of the scroll pane).
HORIZONTAL_SCROLLBAR_AS_NEEDED Show a horizontal scrollbar only when the width of the component contained in

the JScrollPane is greater than that of the visible region.
HORIZONTAL_SCROLLBAR_NEVER Never show a horizontal scrollbar.
VERTICAL_SCROLLBAR_ALWAYS Always show a vertical scrollbar, even if it isn’t needed (even if the component

fits fully within the visible region of the scroll pane).
VERTICAL_SCROLLBAR_AS_NEEDED Show a vertical scrollbar only when the height of the component contained in

the JScrollPane is greater than that of the visible region.
VERTICAL_SCROLLBAR_NEVER Never show a vertical scrollbar.

Table 3: Constants for the scrollbar policy properties of the JScrollPane

import com.sun.java.swing.*;
import com.sun.java.swing.table.*;

public class SimpleTableTest extends JFrame {

public SimpleTableTest() {

setLocation(100,100);
setSize(250,100);

String[][] data = { {"eggs", "sandwich", "steak", "snickers"},
{"bacon", "pickles", "potato", "apple"},
{"syrup", "mayo", "corn", "banana"},
{"pancakes", "chips", "broccoli", "crunch bar"},

Listing 1: Code for Simple JTable

▼▼ FULL CODE LISTING BELOW ▼▼

Figure 4: Two of the five frames showing different set-
tings for the autoResizeMode property of the JTable

VOLUME: 4 ISSUE: 5 1999 • 33Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Inetsoft
www.inetsoft.com

http://www.JavaDevelopersJournal.com• VOLUME: 4 ISSUE: 5 1999Java DEVELOPER’S Journal34

{"sausage", "pizza", "pie", "protein shake"}};
String[] headers = {"Breakfast", "Lunch", "Dinner", "Snack"};
DefaultTableModel model = new DefaultTableModel(data, headers);
JTable table = new JTable(model);

getContentPane().add(table);

setVisible(true);
}

public static void main(String[] args) {
SimpleTableTest simpleTableTest = new SimpleTableTest();

}
}

import javax.swing.*;
import javax.swing.table.*;

public class SimpleTableTest extends JFrame {

public SimpleTableTest() {
setLocation(100,100);
setSize(250,100);

String[][] data = { {"eggs", "sandwich", "steak", "snickers"},
{"bacon", "pickles", "potato", "apple"},
{"syrup", "mayo", "corn", "banana"},
{"pancakes", "chips", "broccoli", "crunch bar"},
{"sausage", "pizza", "pie", "protein shake"}};

String[] headers = {"Breakfast", "Lunch",
"Dinner", "Snack"};

DefaultTableModel model = new DefaultTableModel(data, headers);
JTable table = new JTable(model);
JScrollPane scroll = new JScrollPane(table);

getContentPane().add(scroll);

setVisible(true);
}

public static void main(String[] args) {
SimpleTableTest simpleTableTest = new SimpleTableTest();

}
}

class TableColumnSize extends JFrame {
private static int offset = 50;

public TableColumnSize(int resizeMode, String title) {
// Dummy data for table.
String[][] tableData = {

{"data 1", "data 2", "data 3", "data 4"},
{"data 1", "data 2", "data 3", "data 4"},
{"data 1", "data 2", "data 3", "data 4"},
{"data 1", "data 2", "data 3", "data 4"},
{"data 1", "data 2", "data 3", "data 4"},
{"data 1", "data 2", "data 3", "data 4"}};

String[] headerData = {"Header 1", "Header 2", "Header 3", "Header 4"};

// Set the frame's title and position.
setTitle(title);
offset += 50;
setLocation(offset,offset);
setSize(300,150);

// Create the JTable using the dummy data.
JTable table = new JTable(tableData, headerData);

// This is the important part of this example: Set the autoResizeMode
// of the JTable.
table.setAutoResizeMode(resizeMode);

// Create a scroll pane and insert the JTable into the scroll pane.
JScrollPane scroll = new JScrollPane(table);

getContentPane().add(scroll);
}

public static void main(String[] args) {
// Create 5 TableColumnSize frames - each demonstrating a
// different value of the autoResizeMode property.
(new

TableColumnSize(JTable.AUTO_RESIZE_OFF,"AUTO_RESIZE_OFF")).setVisible(true)
;

(new
TableColumnSize(JTable.AUTO_RESIZE_ALL_COLUMNS,"AUTO_RESIZE_ALL_CO-
LUMNS")).setVisible(true);

(new
TableColumnSize(JTable.AUTO_RESIZE_LAST_COLUMN,"AUTO_RESIZE_LAST_CO-
LUMN")).setVisible(true);

(new

TableColumnSize(JTable.AUTO_RESIZE_NEXT_COLUMN,"AUTO_RESIZE_NEXT_CO-
LUMN")).setVisible(true);

(new
TableColumnSize(JTable.AUTO_RESIZE_SUBSEQUENT_COLUMNS,"AUTO_RESIZE_S
UBSEQUENT_COLUMNS")).setVisible(true);

}

}

import javax.swing.*;

class ScrollBarTest extends JFrame {
private static int offset = 50;

public ScrollBarTest(int horizPolicy, int vertPolicy, String title) {
// Dummy data for table.
String[][] tableData = {

{"data 1", "data 2", "data 3", "data 4"},
{"data 1", "data 2", "data 3", "data 4"},
{"data 1", "data 2", "data 3", "data 4"},
{"data 1", "data 2", "data 3", "data 4"},
{"data 1", "data 2", "data 3", "data 4"},
{"data 1", "data 2", "data 3", "data 4"}};

String[] headerData = {"Header 1", "Header 2", "Header 3", "Header 4"};

// Set the frame's title and position.
setTitle(title);
offset += 50;
setLocation(offset,offset);
setSize(300,150);

// Create the JTable using the dummy data.
JTable table = new JTable(tableData, headerData);

table.setAutoResizeMode(JTable.AUTO_RESIZE_OFF);

// Create a scroll pane and insert the JTable into the scroll pane.
JScrollPane scroll = new JScrollPane(table);

// This is the important part of this example: Set the ScrollBar Policies
// of the JTable.
scroll.setHorizontalScrollBarPolicy(horizPolicy);
scroll.setVerticalScrollBarPolicy(vertPolicy);

getContentPane().add(scroll);
}

public static void main(String[] args) {
// Create 6 ScrollBarTest frames - each demonstrating a different
// value of the horizontalScrollBarPolicy and verticalScrollBarPolicy
// properties.
(new ScrollBarTest(JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS,JScroll-

Pane.-
VERTICAL_SCROLLBAR_NEVER,"HORIZONTAL_SCROLLBAR_ALWAYS")).setVisi-
ble(true);

(new
ScrollBarTest(JScrollPane.HORIZONTAL_SCROLLBAR_AS_NEEDED,JScrollPane.VER-
TICAL_SCROLLBAR_NEVER,"HORIZONTAL_SCROLLBAR_AS_NEEDED")).-
setVisible(true);

(new ScrollBarTest(JScrollPane.HORIZONTAL_SCROLLBAR_NEVER,JScroll-
Pane.-
VERTICAL_SCROLLBAR_NEVER,"HORIZONTAL_SCROLLBAR_NEVER")).setVisible(tr
ue);

(new ScrollBarTest(JScrollPane.HORIZONTAL_SCROLLBAR_NEVER,JScroll-
Pane.-
VERTICAL_SCROLLBAR_ALWAYS,"VERTICAL_SCROLLBAR_ALWAYS")).setVisible(t
rue);

(new ScrollBarTest(JScrollPane.HORIZONTAL_SCROLLBAR_NEVER,JScroll-
Pane.-
VERTICAL_SCROLLBAR_AS_NEEDED,"VERTICAL_SCROLLBAR_AS_NEEDED")).setVi
sible(true);

(new ScrollBarTest(JScrollPane.HORIZONTAL_SCROLLBAR_NEVER,JScroll-
Pane.VERTICAL_SCROLLBAR_NEVER,"VERTICAL_SCROLLBAR_NEVER")).setVisible-
(true);

}
}

Listing 4: Code to test the horizontalScrollBarPolicy and vertical Scroll
BarPolicy of the JScrollPane

Listing 3: Code to test the autoResizeMode property of the JTable
import javax.swing.*;

Listing 2: JTable Inside JScrollPane

This code listing can be downloaded at
www.JavaDevelopersJournal.com

▼▼▼ DOWNLOAD THE CODE ▼▼▼

http://www.JavaDevelopersJournal.com Java DEVELOPER’S Journal 35VOLUME: 4 ISSUE: 5 1999 •

JBuilder 3
www.borland.com/jbuilder

http://www.JavaDevelopersJournal.com• VOLUME: 4 ISSUE: 5 1999Java DEVELOPER’S Journal36

Microsoft
www.microsof

37VOLUME: 4 ISSUE: 5 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

 Spread
ft.com/visualc

http://www.JavaDevelopersJournal.com• VOLUME: 4 ISSUE: 5 1999Java DEVELOPER’S Journal38

Most Java application developers would
like to create pure Java implementations
that provide solutions for their users. In
practice, however, the fact that most hard-
ware products are shipped with legacy soft-
ware negates that lofty purity goal. With
Java you can design your cross-platform
GUI while taking advantage of JNI to create
a wrapper layer around the code that can’t
be ported. For example, a requirement can
be to create a Java application that pro-
vides support for a PCI Artificial Neural Net-
work (ANN) card under OS/2 and Windows
NT. The set of APIs that communicates with
the Neural Network is written in C and
wrapped in a JNI dynamic-link library
(DLL). To control the Neural Network the
Java application has to invoke the correct
set of JNI ANN APIs.

Architecture of a Hardware Neural
Network

A PCI ZISC card contains one onboard
zero instruction set computer (ZISC) and as
many as three single inline ZISC modules
(SIZMs). Each SIZM has six ZISCs. You can
also have a setup made up of several PCI
ZISC slots using a mother-daughter arrange-
ment. In addition, ISA cards are available.
The ZISC, a digital ANN containing 36 neu-
rons (see Figure 1), implements the restrict-
ed coulomb energy (RCE) and the K-nearest
neighbor (KNN) algorithms. The neurons
on each of the ZISC chips are arranged fol-
lowing a radial basis function (RBF)-like
network topology (see Figure 2) composed
of three layers. Each input node corre-
sponds to a component (Vi) of a feature
vector. The outputs are categories or solu-
tions to a classification problem, and the
connections between the second and third
layers are established dynamically as a
result of the learning process.

The ZISC C library DLL contains a rich set
of APIs to do initialization, recognition, clas-

sification, learning, data extraction, neuron
selection and saving/restoring ZISC registers.

Java vs C Data Types
Some C/C++ data types are not compati-

ble with data types in Java. One of the first
things to do when you get ready to create
your Java wrapper class is to identify the
native data types that will be matched on
the Java side. Developers need to consider
several factors, such as the performance of
the resulting code and the desire to remain
faithful to the structure of the native APIs
being replaced (see Table 1 for the mapping
used within the ZISC wrapper class).

Developer Beware!
Determine your mapping as best you can

to fit the situations in which the variables
will be needed. Ask yourself questions: Is
the native code using the variable and pass-
ing it to a function by value or reference? Is
any one of the types being used as an array,
and if so will your mapping cause the array
contents to be lost? Don’t be afraid to spend
time working on this aspect of the design –
you have to understand the interfaces of the
functions you’re wrapping.

JNI: A Quick Overview
Java can run on multiple platforms

because the Java Virtual Machine (JVM)
can interact with the underlying operating
system software. As a Java developer, you’ll
soon need to invoke some native code if
you haven’t already. However, to create
Java applications/applets that can be writ-
ten once and tested everywhere, you have
to encapsulate the native code interfaces
and document them in such a way that any-
one can understand where the impure code
is located. Don’t forget: this native code
isn’t portable.

JNI acts as the glue between your Java
application and the supporting native code.
It lets you invoke native functions, pass
parameters to them and capture the return
codes. To create a JNI application:
1. Build a Java wrapper class that includes

all the native functions you’ll be calling
from Java.

2. Use the javah tool included in the Java
JDK to create a C/C++ language header
file that contains the Java to C/C++ proto-
types.

Use javah -help for more information on
how it can be used. To build the C/C++
header file for Java wrapper class XXXX
you’d execute javah -jni XXXX. jni_md.h
contains all JNI-accepted calling sequences,
such as JNIEXPORT and JNICALL.

Native methods receive at least two of
these parameters:

• JNIEnv – points to the existing JNI envi-
ronment (interface pointer) during

Digital Neural Network
Control Using JNI

Preserve your legacy software investment or delay the
conversion of your hardware control libraries while
taking advantage of Java machine-independent GUIs

HOW TO CREATE A JNI APPLICATION

by Bernie Arruza

C/C++ (Intel) Java JNI
char * (32 bits) String jstring
byte* (32 bits) byte[] jbyteArray
WORD (unsigned short-16bit) int jint
short (signed short-16 bit) short jshort
int (32 bits) int jint
void (32 bits) void void
BOOL (unsigned short-16bit) boolean jboolean
BYTE (8 bits) byte jbyte

Table 1: Variable types mapping within the ZISC wrapper class

39VOLUME: 4 ISSUE: 5 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

method invocation, as well as to a table
that contains the function pointers for
all JNI conversion methods. This point-
er should be used only within the
thread where it was loaded by the JVM.

• jobject – for the class instantiated object
method or jclass for static methods.

See file jni.h for all supported JNI types
and data access methods. Also, don’t be
alarmed by the name mangling caused by
javah when creating the native language
prototypes, since they are invisible to the
user. Notice how for the ZISC code a “_” is
replaced by a “_1”.
3. Create a new C/C++ DLL project using

your favorite development platform. This
project should point to your generated
header file. Notice the functions in jni.h
are referenced differently depending on
the type of source module used to build
the native DLL. From a C source file we’d
invoke a JNI conversion method as:

(*env)->GetByteArrayElements(env, componen-

tArray, NULL);

From a C++ file the same function is ref-
erenced as:

env->GetByteArrayElements(componentArray,

NULL);

Other conversion methods handle:
• Obtaining the handle of the Java object’s

class
j_class = (*env)->GetObjectClass(env,

jobject_parameter);

• Getting the value of an integer variable
from Java. Use GetStaticFieldID and Get-
StaticIntField for static variables (see
GetXXXXField for other types):

j_fieldID = (*env)->GetFieldID(env, j_class,

“int_variable_name”, “I”);

int_value = (*env)->GetIntField(env,

jobject_parameter, j_fieldID);

• Calling a Java method. Use GetStat-
icMethodID and CallStaticVoidMethod
for static variables (see CallXXXXMethod
for other types of methods).

j_methodID = (*env)->GetMethodID(j_class,

“void_method_name”, “()V”);

(*env)->CallVoidMethod(j_class, j_methodID);

I seldom use these conversion methods
as my designs specify that the hardware
should know nothing about how the Java
software is implemented. One of the few
exceptions could be the JNI exception-han-
dling conversion methods. The following
sections describe how the ANN hardware
provides services for the Java software
making the requests. As a rule, avoid

developing JNI code that “knows” the
interfaces for the service provider layer
and service requester layer. This results in
an interface that will be hard to maintain
and upgrade.

Neural Network Java Wrapper
The Java wrapper class JZISC was built

using IBM VisualAge Java 2.0; the JNI
library JZISC.DLL was built using Microsoft
Visual C++ 5.0.

To create the JNI JZISC class, you can fol-
low the steps listed in the previous section:

1. Build a Java wrapper class JZISC that
includes all functions you will be calling
from Java. An example of a native Java
method looks like:

public native void JZ_Identify(byte compArray[],

int nComp, int status[], int category[]);

Notice the native keyword and the lack
of a method body. Also, when the JZISC
class is initialized it’ll have to load the
native DLL that contains the actual code.

I/O BUS [30] daisy chain in [1]

decision
output

daisy chain out [1]

[4]

[21]

inter ZISC
communication BUS

controls [8]
addresses [6]
data [16]

neuron
1

Learning
and

Decision
logic

neuron
2

neuron
36

Redrive

Figure 1: ZISC architecture block diagram

V0

V1 CAT 0

CAT 1

CAT n

V2

Vn

input layer hidden layer output layer

Figure 2: Three-layer RBF network topology

40 Java DEVELOPER’S Journal • VOLUME: 4 ISSUE: 5 1999 http://www.JavaDevelopersJournal.com

static {

System.loadLibrary("JZISC"); // Make sure the

file’s directory is in PATH statement

}

2. Since the ANN Java wrapper class is
called JZISC (see Figure 3), to build the C
header file you would execute javah -jni
JZISC. The corresponding generated pro-
totype for the previously shown Java
native method looks like:

JNIEXPORT void JNICALL Java_JZISC_JZ_1Identi-

fy

(JNIEnv *, jobject, jbyteArray, jint, jintArray,

jintArray);

3. Your source file within the C DLL project
should include all required header files like:

#include <jni.h> /* JNI includes

*/

#include "JZISC.h" /* javah generated

header file */

#include "zapi.h" /* ANN C prototypes

for ZISC card */

When creating your function definitions,
follow the format of the prototypes in the
header file. For our sample method the
actual implementation would look like the
contents of Listing 1.

A Solution to the XOR Problem
In 1969, Minsky and Pappert demon-

strated the limitations of a single-layer
neural network by proving that it couldn’t
do a simple pattern classification task. If a
multilayer ANN can solve the exclusive OR
(XOR) problem, f(0 0)=0, f(0 1)=1, f(1 0)=1,
f(1 1)=0 (see Figure 4), then it can also clas-
sify more complicated input patterns that
are not linearly separable.

The first thing the Java sample applica-
tion does is to initialize the ANN PCI card,
query it for the number of neurons avail-
able, the number of cards installed – ISA or
PCI – and the version number (see Listing
2). Next we load the XOR value pairs and
the predicted results (see Listing 3 for an
example of a pair of inputs and expected
output). Note that the ANN expects to see
inputs of type byte, and zero isn’t a good
choice for an input value since it doesn’t
provide enough resolution. With ANN
implementations the developer has to nor-
malize the input values. For this implemen-
tation we equate zero (false) to a value of 1
and 1 (true) to a value of 5. Once the train-
ing process has been completed, the net-
work is tested by specifying an input pair
and asking the network to return the pre-
dicted value (see Listing 4 for a portion of
the output generated by the Java program).

This card can perform other tasks, such
as executing other types of recognition

schemes, minimizing the number of neu-
rons used and saving the ANN weights, but
that’s another article.

References and Resources
1. R. David, E. Williams, G. de Tremiolles

and P.l Tannhof. “Noise Reduction and
Image Enhancement Using a Hardware
Implementation of Artificial Neural Net-
works.” www.fr.ibm.com/france/cdlab/-
contact.htm

2. IBM France ZISC home page:
www.fr.ibm.com/france/cdlab/zisc.htm

3. Silicon Recognition: www.silirec.com/
4. S. Haykin (1994). Neural Networks: A

Comprehensive Foundation, pp. 236–284.
IEEE Press. ISBN 0-02-352761-7.

About the Author
Bernie Arruza is an advisory engineer at the IBM
Manufacturing Technology Center in Boca Raton,
Florida, with an MS in electrical engineering. His

department designs and develops atomic force
microscopes for the semiconductor industry. You can
contact Bernie with questions and comments at
arruza@ibm.net.

Output
= 1

Output
= 0

Output
= 0

(0.1)

(0.0) (1.0)

(1.1)

Input
x2

Input x1

Figure 4: XOR problem decision boundaryFigure 3: Partial view of JZISC class methods

/* This is the actual C ZISC function prototype */
// void IMPORT Z_Identify(BYTE _far *componentArray, WORD _far NComp,
WORD _far *Status, WORD _far *Category);

/* This is a local wrapper for the actual C function. It can be used for debugging
purposes to

verify data type conversions and returned values before they are passed to
the third party

DLL */
void J_Z_Identify(BYTE *componentArray, WORD nComp, WORD *statusArray,
WORD *categoryArray) {

Z_Identify(componentArray, nComp, statusArray, categoryArray);
}

/* Implementation of the javah generated prototype */
JNIEXPORT void JNICALL
Java_JZISC_JZ_1Identify(JNIEnv *env, jobject obj, jbyteArray componentArray, jint
nComp, jintArray statusArray, jintArray categoryArray) {

// Get all component array elements
jbyte *component_array =

(*env)->GetByteArrayElements(env, componentArray, NULL);

// Get components from status array
jint *status_array =

(*env)->GetIntArrayElements(env, statusArray, NULL);

// Get components from category array
jint *category_array =

(*env)->GetIntArrayElements(env, categoryArray, NULL);

// Call local wrapper for ZISC method
J_Z_Identify((BYTE *)component_array, (WORD)nComp, (WORD *)status_array,

(WORD *)category_array);

// Release work buffer for component array
(*env)->ReleaseByteArrayElements(env, componentArray, component_array, 0);

// Update status array with new value
(*env)->SetIntArrayRegion(env, statusArray, 0, 1, status_array);

// Release work buffer for status array
(*env)->ReleaseIntArrayElements(env, statusArray, status_array, 0);

// Update category array with new value
(*env)->SetIntArrayRegion(env, categoryArray, 0, 1, category_array);

// Release work buffer for category array

Listing 1: JNI prototype implementation

▼▼ FULL CODE LISTING BELOW ▼▼

arruza@ibm.net

Java DEVELOPER’S Journal

(*env)->ReleaseIntArrayElements(env, categoryArray, category_array, 0);
}

// Create instance of JFC dialog
NeuralNet panel = new NeuralNet();

// Create instance of Native class
JZISC ziscCARD = new JZISC();

// Initialize ANN card
int initialized = (int)ziscCARD.JZ_Init(0);

if (1 == initialized)
System.out.println("cannot open ZISC device (type any key to exit)\n");

// Query number of neurons in PCI board
int numberOfNeurons = ziscCARD.JZ_GetMaxNeurons();

System.out.println("The ZISC has " + numberOfNeurons + "neurons\n");

// Get ANN version and type
ziscCARD.info= ziscCARD.JZ_GetCardInfo(0);

System.out.println("ZISC Info " + ziscCARD.info + "\n");

/********************** learning **************************/
/* Symbol 0 is represented by 1 and symbol 1 is represented by a 5

/********* input a new set of 2 components (0 0) ***/
ziscCARD.array[0]= (byte)1;
ziscCARD.array[1]= (byte)1;
System.out.println("Vector (0 0) \n");
ziscCARD.JZ_PutVector(ziscCARD.array, 2); /* input components */
ziscCARD.JZ_PutCat(1); /* learn category 0 */

/********* input a new set of 2 components (0 1) ***/
ziscCARD.array[0]= (byte)1;
ziscCARD.array[1]= (byte)5;
System.out.println("Vector (0 1) \n");
ziscCARD.JZ_PutVector(ziscCARD.array, 2); /* input components */
ziscCARD.JZ_PutCat(5); /* learn category 1 */

/********* input a new set of 2 components (1 0) ***/
ziscCARD.array[0]= (byte)5;

ziscCARD.array[1]= (byte)1;
System.out.println("Vector (1 0) \n");
ziscCARD.JZ_PutVector(ziscCARD.array, 2); /* input components */
ziscCARD.JZ_PutCat(5); /* learn category 1 */

/********* input a new set of 2 components (1 1) ***/
ziscCARD.array[0]= (byte)5;
ziscCARD.array[1]= (byte)5;
System.out.println("Vector (1 1) \n");
ziscCARD.JZ_PutVector(ziscCARD.array, 2); /* input components */
ziscCARD.JZ_PutCat(1); /* learn category 0 */

Recognize pair (0 1)

Status content after input vector

error flag= 0
deg= 0
unc= 0
full= 0
id= 1
Sequence of read dist read cat

==
CORRECT: dist = 0 Out= 1

Listing 4: Sample output

Listing 3: ANN learning procedure

Listing 2: Extract information from ANN hardware.

The code listing for this article
can be downloaded at

www.JavaDevelopersJournal.com

▼▼▼ DOWNLOAD THE CODE ▼▼▼

http://www.JavaDevelopersJournal.com• VOLUME: 4 ISSUE: 5 1999Java DEVELOPER’S Journal42

Recently I had the opportunity to
work with Sedona Geoservices’ Spa-

tialVision, an end-user application for per-
forming geospatial data querying, data visualization and analy-
sis. SpatialVision is designed to help your organization harvest
information from your data using a geospatial focus. Geospatial
analysis can be defined as the process of comparing your rela-
tional data to location data – for example, where your cus-
tomers are located on a map. Sedona has targeted applications
as diverse as call center management, sales operations and even
service dispatching as candidates for such analysis. The compa-
ny estimates that over 80% of preexisting data archives have at
least a portion of their data in an inherently spatial format.

The equipment I used for this evaluation was a Dell Pen-
tium II with 200 MHz, 64 MB RAM, 4 gigabyte disk drive, Win-
dows NT 4.0 (Service Pack 4), ViewSonic 15-inch SVGA monitor,
3COM Etherlink XL Adapter and 8x CD-ROM.

Installation and Configuration
You can download SpatialVision from the Sedona Geoser-

vices Web site, but I used a CD-ROM to install it. SpatialVision
works only with the Oracle Spatial Cartridge, and you’ll need
access to an Oracle database with the cartridge up and running.
Sedona provides Internet access to their own demonstration
database, however, so you can test the product without having
your own Oracle database installed locally.

SpatialVision is a 100% Pure Java application that requires
the JRE 1.2 environment to run. (Sedona provides the install kit
for this version of the JRE as a link from the installation panel.)
Once you have the JRE installed, you can use a second link from
the main panel to install the product itself, which takes about
five minutes and 10 megabytes of disk space. SpatialVision
comes equipped with a series of manuals in Adobe PDF format,
but the install program doesn’t add them to the system menu
for you. While this isn’t a big deal, the product is targeted to end
users, who may not be as comfortable searching for document
files as a software developer would be.

Using SpatialVision
Once I installed the product, I opened up the Adobe tutor-

ial, started SpatialVision and began playing around. Since I don’t
know much about geospatial data analysis, I relied on the tuto-
rial for direction. The examples and images were sufficiently
detailed and I found I could follow along reasonably well. I sus-
pect that a user familiar with geospatial data analysis would find
the tutorial even easier to use. I connected to my local Oracle

database without difficulty via the database configuration panel,
using a thin-client JDBC driver.

SpatialVision allows you to create groups of database con-
nections and even to join data across different Oracle databases
if you wish. Whatever information you need to connect to your
database can be found on the configuration panel. The only
parameter that may seem unfamiliar is the requirement to enter
the Oracle System ID (SID) as the database value, which may be
confusing to those who are used to providing Oracle
TNSNAMES values. I was able to connect to my local Oracle
database and select some data from my sample college appli-
cation without difficulty. But I was stopped short of analyzing any
of my data in my local database because none of it was stored
in a geospatial format. Although the data in my preexisting Ora-
cle database contains location information such as phone num-
bers and street addresses, SpatialVision can’t analyze this data
directly. To make use of SpatialVision you’ll need to tie this data
to a location on Earth through a process called geocoding.
Geocoded addresses are stored in the Oracle Spatial Data car-
tridge, and your preexisting data is linked to these geocoded
entries as attributes. It makes perfect sense when you think
about it, but I didn’t even consider this aspect of the problem
when I started playing with SpatialVision. If you’re already using
Oracle’s Spatial Data cartridge, this is unlikely to be a problem.
However, if your data isn’t already encoded, you won’t have
much success in using SpatialVision. Unfortunately, the product
doesn’t provide tools to assist you with the geocoding effort, but
Sedona does offer consulting services to assist you. Sedona’s
marketing manager told me they plan to provide these types of
utilities for a future release of the product. In the meantime,
you’ll need to work with Sedona directly.

At this point I thought I was going to be writing the shortest
product review in history since I had no data to work with. I was
pleasantly surprised, however, to find that Sedona makes their
demo database available across the Web as part of the installa-
tion process. I was able to open a connection over the Internet
using the Oracle thin-client JDBC driver to a Sedona database on
a public server. I recommend a higher bandwidth connection
than the 28.8 speed that I used for my remote testing. Never-
theless, despite the low bandwidth, I was able to connect to the
Sedona database of information about locations in eastern
Pennsylvania. SpatialVision includes a query-composer and edi-
tor for building queries against your database, and you’ll find the
panels easy to use for generating SQL queries against the data-
base. On the query panel you can select both fields as well as
display the range of data for a given field. For example, I select-

ed the “restaurants” table and then searched for a list of restau-
rant names that I could use in a query for locating places to eat
in eastern Pennsylvania. Part of the power of SpatialVision is its
ability to provide extra geospatial intelligence in the formulation
of queries. For example, I was able to search for all Burger King
restaurants in the borough of Norristown.

You can also search for data using specialized geospatial
values such as “within a radius of 50 miles,” and this is the real
power of SpatialVision. Information in your organization can be
mapped back to geocoded locations and then also used in the
formulation of queries. I can easily imagine using the product to
find all customers that have ordered “blue widgets” within a 20-
mile radius of Easton, Pennsylvania. Once you’ve located your
data, SpatialVision can display it on a map and you’re free to add
your own images and symbols to the resulting display. Spa-
tialVision can be deployed using an appletviewer, or you can
embed the product inside a Web page for even greater flexibili-
ty. I found the data to be very usable over a 28.8 connection, so
it’s feasible to deploy SpatialVision to your organization over an
extranet. However, given the volume of data you’re likely to
access, I’d strongly recommend a higher bandwidth connection
for use with SpatialVision.

Summary
I’m impressed with Sedona’s efforts to provide a com-

pletely Java-based application for end users, and I like the
geospatial data analysis concept. Oracle is certainly a good
choice for the database, but you’ll need to spend time geocod-
ing your preexisting data to work with SpatialVision. Sedona’s
forthcoming utilities may be useful for organizations that want
to make the jump to geospatial analysis but aren’t sure how to
get there.

About the Author
Jim Milbery, an independent software consultant
based in Easton, Pennsylvania, has over 15 years
of experience in application development and
relational databases. You can visit his Web site at
www.milbery.com.

PRODUCT REVIEW

SpatialVision
by Sedona Geoservices

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
SpatialVision
Sedona Geoservices, Inc.
649 North Lewis Road
Suite 220
Limerick, PA 19468
610 495-6701
www.sedonageo.com
SpatialVision 1.1 is supported on Windows
95/98/NT and Sun Solaris 2.5.1 or higher.

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
World class

 AWARD

by Jim Milbery

Use geospatial data analysis in
Java-based app for end users

jmilbery@milbery.com

43VOLUME: 4 ISSUE: 5 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Interland
www.interland.net

44 Java DEVELOPER’S Journal • VOLUME: 4 ISSUE: 5 1999 http://www.JavaDevelopersJournal.com

Universal ORB
Will Help Networks
Make Enterprises
More Competitive

by Art Nevarez

About the Author
Art Nevarez is chief architect for Novell’s Java
Technology Group, which produces the JVM, the
NetWare SDK and a number of API- and Java-related
technologies. A member of several Novell
policy-generating bodies, Art holds a BS in computer
science from Brigham Young University. You can
e-mail him at art@novell.com.

art@novell.com

Novell looks for –

and finds – a way

to give developers

an easy solution

to the problem

of extending

network

functionality

When Novell, a global leader in networking,
sought to implement powerful new Java-centric object
request broker (ORB) technology in its products, the
company forged a strategic partnership with Object-
Space, Inc., an emerging leader in the distributed
computing market. ObjectSpace’s Voyager product
family is 100% Pure Java and standards-neutral, and
enables CORBA and RMI objects to communicate
transparently across the wire.

The universal-ORB decision addressed a dilemma
the industry was facing, and Novell wanted to give the
development community an easy way to extend net-
work functionality. This meant embedding an ORB in
Novell products. However, most ORBs in use today are
based on various incompatible standards.

These incompatibilities spawn difficult challenges
for developers and network users. An object enabled

for remote messaging using the CORBA standard,
for example, can’t readily communicate by con-

ventional means with objects enabled for RMI
or DCOM. ORB incompatibili-

ties can be resolved
through a combination

of bridge software
and manual pro-
gramming. Howev-
er, Novell rejected
this alternative in an

effort to free develop-
ers from complexity and

extra labor rather than bur-
den them.

Speed Development, Simplify Design
Novell needed a simpler, more straightforward

solution – a universal ORB, with components that
could communicate transparently with any client
object and with clients that could interact with any
server. Such an ORB could streamline application
design, shorten development cycles, reduce costs and
make applications easier to maintain and modify.

As a result, Novell and ObjectSpace are partnering
to bring universal ORB functionality to networking
customers, combining it with Java portability and the
ability of directories – the heart of next-generation
networking – to make networks easier to use and
manage.

Leverage Opportunities
Together, the universal ORB, Java and advanced

directories, such as Novell Directory Services (NDS),
will enable companies to make people more produc-
tive and business operations more efficient. At the
same time it will help companies to readily transform
emerging opportunities, such as e-commerce, into
competitive advantages.

To accomplish this, Novell is working with these
technologies to achieve four key objectives:
1. Protect customers’ investments in Novell platforms

by extending the service life of its installed base
into future heterogeneous environments.

2. Tightly integrate legacy networks and data infra-
structures with next-generation networks based on
distributed object technology.

3. Embrace telephony, JINI, Universal Plug and Play
(UPP), nontraditional networks and other tech-
nologies through dynamic network support.

4. Integrate multiple infrastructures and transparently
bring the result into people’s lives by providing
users with stable, secure and mobile identities on
the network.

We believe that Java and a universal ORB are
absolute requirements for efficiently achieving these
objectives in today’s real-world networking environ-
ments.

Generate Power at Runtime
To be universal, an ORB must provide a neutral

meeting ground for multiple standards. Voyager holds a
critical advantage in this regard. Java has dynamic capa-
bilities that can enable objects to be extended at run-
time, providing vast architectural flexibility and power.
However, these capabilities are implicit only in the Java
specification and are not implemented in the JDK.

A universal ORB enhances a protocol or platform-
specific ORBs by allowing servers and clients to inter-
operate with other protocols, platforms and program-
ming models without requiring an extensive retooling
and recoding of the existing applications and services.
Voyager leverages Java’s dynamic capabilities, for
instance, by transparently adding to any remote object
at runtime all the “plumbing” it needs – stubs, skele-
tons, helper classes – to generate CORBA bindings.
And by generating proxies transparently, also at run-

New, more flexible networks
increasingly cross traditional boundaries

to link all technologies

45VOLUME: 4 ISSUE: 5 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

time, the ORB allows components to interact across
the wire without being aware that they are communi-
cating remotely. Source code isn’t required to accom-
plish this “magic” – remote messaging is enabled
even when source has been lost.

Preserve Investments,
Minimize Change

NDS is key to Novell’s Java-centric distributed
environment. “Write once, run anywhere” portability
makes Java the platform of choice because it lets Nov-
ell, their customers and industry partners rapidly
develop network services and applications for hetero-
geneous, Internet-enabled environments.

Combining the use of NDS with Java and Voyager
will help developers at customer companies integrate
directory services with enterprise databases and applica-
tions. The ORB will transparently provide the object com-
munications plumbing, thereby saving time, effort and
cost.

There are far-reaching implications. One of the
biggest challenges facing Novell’s customers is how to
efficiently integrate static, legacy data structures –
“information silos” – with next-generation dynamic
environments.

The goal is to use stored and real-time data with
equal facility. This is important because companies
have been amassing vast data assets in silos and other
static inflexible structures for some 40 years, and con-
tinue to do so. Static code and data structures contain
much of the logic and information that run business-
es today, including e-commerce. They sit on disk in
static structures – or are constrained by static bindings
to network protocols, security mechanisms and plat-
form-dependent APIs.

Competitive advantage depends on dynamically
leveraging this data by, for example, enabling Web
sites to customize themselves on the fly to individual
visitors, and enterprise networks similarly tailoring
themselves to individual users.

However, static and dynamic systems are based
on largely incompatible programming paradigms.
Development teams can get them to interwork, but
not easily. And when business or technology changes
occur, these interfaces must be manually reworked, a
relatively slow, costly process, making the whole
enterprise less competitive.

Directory services combined with a universal ORB
and related technologies let static and dynamic systems
seamlessly interwork with little development effort. Pro-
grammers using Voyager readily create objects or object
references to static enterprise records. They make these
records look and behave like real, dynamic data objects
that can be directory-programmable from Java, CORBA
and, soon, DCOM. The directory provides the stable iden-
tities for all the principals involved, and insinuates them
into the existing management fabric of the enterprise.

As a result, it becomes remarkably easy to “inject
life” into static data structures and code by transform-
ing them into distributed objects that can be used
dynamically. Further, dynamic capabilities open the
entire enterprise code base to virtually any new pro-
tocol or standard. This enables companies to quickly
gain new technology advantages while preserving IT
investments and minimizing change.

Raise IT Productivity
A pure Java universal ORB will raise developer pro-

ductivity at Novell customer sites in numerous ways.
It’s already making their own development team more
productive. Dynamic capabilities plus a clean user
interface are enabling them to rapidly make sophisti-
cated functionality available to their customers through
directory services and other Novell products while
controlling their development costs. The company
gains productivity advantages several ways:
• They instantly remote-enable any Java class without

modification by generating proxies at runtime. As a
result, their developers don’t have to waste time
and effort on stubs or helper classes.

• They use regular Java syntax to build remote
objects, invoke messaging, propagate objects
around the network and perform virtually all other
development tasks.

• Their programmers have full native CORBA support
for IDL, IIOP, bidirectional IDL/Java conversions and
key RMI interfaces. All that is required is writing just
a single line of code to dynamically CORBA-enable
Java objects at runtime without modification.

Other capabilities, such as Dynamic Aggregation,
an ObjectSpace exclusive, let Novell extend objects’
characteristics and behavior on the fly.

Achieve Rapid Change
Novell’s choice of ORB offers a multitude of advan-

tages in addition to universality. Mobile agent technol-
ogy embedded in the ORB enables the network direc-
tory to become even more programmable. Because
the directory is the repository of user identifications
and enterprise resources, programmability gives cus-
tomers another powerful tool for achieving rapid
change at low cost – a key competitive advantage.

From Novell’s standpoint, the realistic way to
achieve programmability today at the directory level is
to take whatever representations of humans, products
and data exist on the corporate backbone and wrap
them with programmable objects.

How might this work in a production setting? Sup-
pose an IT administrator wants to distribute a custom
spreadsheet component or any other piece of code.
The code must go to heterogeneous clients across the
enterprise. The administrator uses the directory’s con-
sole to make choices about deploying this component,
then the ORB transparently implements the choices by
encapsulating the component in a wrapper that is
actually a mobile agent.

This “smart wrapper” knows what it has to do and
how to do it. It knows how to interact with the direc-
tory, navigate the network and deliver the component
to designated clients.

The wrapper replicates itself and its cargo across
the network to servers for deployment as specified by
the administrator. The distributed component might
be a Windows executable, a Java class, an ActiveX
component – just about anything. It could be special-
ized code for a handful of users or a software update
going out to thousands of clients across disparate sys-
tems enterprise-wide.

Throughout, the infrastructure remains transparent
while giving the administrator tremendous control,
flexibility and productivity. The administrator simply
drops the code on a server, or in a directory contain-
er, and points to where it should go. The directory and
Voyager do the rest.

The simplest, most immediate instance of this
scenario takes place within the server domain, which
has its own security safeguards. The power kicks in
when servers, not humans, generate the dynamic
code.

Complex, diverse environments like this one demand use of a standards-neutral ORB.

CONNECTIVITY

S
Y

S
T
E

M
S

 C
O

M
P

O
S

A
B

IL
IT

Y

46 • VOLUME: 4 ISSUE: 5 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Capabilities like these let the network – directories,
network servers and other services – automatically dis-
tribute code without requiring developers to target any
particular networking infrastructure or protocol. IT pro-
ductivity rises because developers are able to focus on
solving specific business problems and deliver inter-
faces to the resulting logic. Administrators running the
network are then free to focus on distributing and
“networking” the objects these developers create.

Enhance Data Value,
Simplify Administration

“Smart wrappers” and other ORB capabilities will
make enterprise systems more robust and useful while
reducing IT management costs.

Making Data More Useful
E-commerce is driving the need for Web sites that

customize themselves to the individual’s unique needs
and interests. ORB capabilities will make it easier for
networking customers to use their legacy databases to
populate Web pages with individualized information.
The directory will provide the personalization; Voyager
will deliver database records in real time by dynami-
cally wrapping them on the fly. This in turn will make
it easier and less costly to create sites that “sell” more
effectively and enrich companies’ relationships with
their customers.

Simplifying Systems Administration
When the network management service needs to

manage a workstation, IT professionals won’t have to

preinstall a network management agent on that client.
Instead, the service will send a mobile object that
knows how to get there and, upon arrival, “unpack,”
install and activate the service. The target device could
be a PDA or cell phone, enabling the device to readily
consume network services such as accessing corporate
address books, Web gateways and e-mail. Lite Client, a
recent breakthrough in the Voyager ORB technology,
lets developers remote-enable applets that leverage
dynamic proxy generation and other advanced capabil-
ities, while adding only a 14 K JAR file to the footprint.
The directory will provide the pervasive management

“dock” for these
agents.

Making Networks More Flexible
When a console requires an alternative means of

controlling a node on the network, such as when
using ActiveX components for accessing network ser-
vices, the ORB facilitates it by providing the service
locally or delivering it remotely. This allows unequaled
network-level diversity, opening up heterogeneous
networks to all devices on the network.

Connect Globally and Personally
In the very near term, Novell believes, networks

will dynamically interact to whatever degree is permit-
ted by their security features and user-defined settings.
Using directory-based credentials, a user will be able
to send out delegates as mobile agents to act on their
behalf. These agents will not only roam the user’s own
enterprise but will collaborate with networks world-
wide.

Universal ORB technology has the unique ability to
easily enable mobile agents and other capabilities,
making it a perfect fit for achieving dynamic network
flexibility — not just across the enterprise, but on a truly
global scale.

Novell strategists also believe JINI will quickly
become another important player
in networking scenarios. JINI’s auc-
tion-style capabilities will help
them design more efficient work-
group networks with enormous
flexibility.

ObjectSpace has already
announced Voyager support for
JINI. Combining directory services,

Java, JINI and the universal ORB will provide an
unprecedented “critical mass” of technology, pro-
pelling networking into a new, more productive era. It
will give Novell and their customers even greater free-
dom to build networks that connect more globally
than ever before – and also more personally, as these
networks increasingly customize themselves to indi-
vidual user needs.

Snowbound
www.snowbnd.com

47VOLUME: 4 ISSUE: 5 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Spring Internet
events.internet.com/summer99

48 • VOLUME: 4 ISSUE: 5 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

A
Q

A
Q

A
Q

JDJ: Let’s start off with
your product, Voyager
Pro. Can you give us an
idea of what it is, what it
does and what makes it
appealing to the con-
sumer?
David: Voyager is a
product line that is
focused on building dis-
tributed applications. It

provides work for the different standards that have emerged,
CORBA, D-COM, RMI and overall integration with the Java
language and technology. Voyager provides substantial capa-
bilities to simplify the building of distributed systems. By inte-
grating all of these different standards together, it provides
the capabilities to build applications that can interoperate and
integrate existing technologies as well as some of the new
standards that are coming out. We have announced our sup-
port for some emerging standards, such as JINI and Enter-
prise JavaBeans, and we’ll be introducing products that sup-
port those technologies.

JDJ: Now suppose I’m the consumer, the Java developer,
and I’m out there looking for a prime product for my devel-
opment – what is going to make me choose yours over
anybody else’s?
David: A couple of things. You can download it right off our
Web site. You can try it out, and it has received significant
accolades. In fact, at the show we won the Best Product
Award for Voyager [JDJ Editor’s Choice Awards] and some of
our other technologies have won awards. So we believe in a
direct model distribution right off our Web site. We provide
substantial white papers and technical assistance right there
online, which allows you to get started very easily. And then,
as you begin to use the product, some of the differentiations
that it offers become very obvious to you. So I believe one of
the main reasons people use our product – in fact, it is used
by over 10,000 companies today worldwide – I believe the
reason is that it’s very accessible and it provides substantial
value that is easy to actually get started with.

JDJ: What do you see in the immediate future for your
company and your product?
David: Well, our goal is to make Voyager, the product line,

very pervasive to really get everybody that is trying to get into
distributed computing and build significant Enterprise appli-
cations to use our technology. So when they think of building
distributed systems, they will think of Voyager and the way
that Voyager can simplify their life. Over the next couple of
years I would like to see a lot of people begin to use Voyager.
We’re shipping it with a lot of the development tool vendors
such as VisualAge for Java and Symantec’s Visual Café. We’ll
be exposed to a lot of Java developers. And in the next cou-
ple of years, with the introduction of Enterprise JavaBeans or
some of the higher level functionalities such as JINI, I believe
we can become a pervasive technology and really get wide-
spread adoption so that people can build systems much sim-
pler than they could in the past.

JDJ: You mentioned before about a Web site where you
can download a demo. Can you give us the Web address?
David: Sure. If you go to www.objectspace.com, you’ll see
the company information there. If you go to the product sec-
tion, you can download Voyager directly. You can also have
access to all the technical white papers and comparisons and
all that, that’re online.

SYS-CON RADIOSYS-CON RADIOINTERVIEW
Broadcast live from the Jacob Javits Center in New York City, SYS-CON

Radio’s Chad Sitler spoke with David Norris of ObjectSpace

S

YS
-CON

R
A

D
IO

w
w

w
.s

ys-con.com

David Norris
President and CEO
ObjectSpace

Certify On-line
certifyonline.com

49VOLUME: 4 ISSUE: 5 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Slangsoft
www.slangsoft.com

Java DEVELOPER’S Journal50 • VOLUME: 4 ISSUE: 5 1999 http://www.JavaDevelopersJournal.com

The JavaBean component model pre-
sents entirely new ways of developing soft-
ware. Once a component interface is speci-
fied, the actual implementation can be
accomplished by another programmer
down the hall, across the country or any-
where in the world. This allows outsourcing
of software development at the component
level.

At Flashline we’re publicly testing a new
service called Beans by Design, which
allows companies to post requests for spec-
ified JavaBeans that are then bid on by
developers. This service is sort of a cross
between an eBay auction and a Match.com
dating service. Using a double-blind bid-
ding system, we help match developers
with companies seeking component devel-
opment: “SWD seeks EJB for software appli-
cation!”

A component outsourcing service is a
logical outgrowth of the general trend
toward outsourcing software development.
Outsourcing information technology is an
increasingly popular solution for corpora-
tions unable to meet the burgeoning
demand for software. IT outsourcing is a
$100 billion business (IBM, Yankee Group)
growing at 15% annually (Giga). Outsourc-
ing software development offers many
advantages:
• Access to greater pool of resources
• Cost control
• Cost savings
• Access to specific expertise
• A focus on core competencies
• Shorter development cycle
• Flexibility in meeting demands

Outsourcing at the component level
offers not only these traditional outsourc-
ing advantages, but additional ones as well.
Because you’re only outsourcing compo-
nents and not an entire application, your
risk is reduced. You remain in control of the
overall development process. Software

components by their very nature lend
themselves to a much more precise de-
scription than entire applications. If you’re
doing large-scale Java development, you’re
using an object-oriented modeling system
with UML to specify your system’s develop-
ment. Once you’ve defined the interface
specifications for each component, it’s
quite straightforward to parcel out devel-
opment to individual developers.

Component-based development is poised
for explosive growth. It’s faster, more reli-
able and easier to maintain. I highly recom-
mend Jacobson, Griss and Jonsson’s book,
Software Reuse (Addison Wesley Longman),
which outlines order-of-magnitude (5x–10x)
improvements in development speed, relia-
bility and maintenance from reusable soft-
ware components. The GartnerGroup pro-
jects that 70% of corporate applications
development will utilize components by
2003. For components that lie outside your
in-house development expertise or exceed
your available resources, outsourcing their
development will come quite naturally.

Beans by Design sits at the confluence of
these two powerful forces, combining the
benefits of component-based design with
the benefits of outsourcing. We’ve imple-

mented this service on our Web site, where
it reaches a global marketplace of develop-
ers and companies. Flashline is the first to
implement this revolutionary approach to
software design and we’d welcome some
feedback.

Here’s how Beans by Design works (see
Figure 1). Companies seeking JavaBeans
post a request on our Web site describing
the component – name, description, inter-
face specification, licensing terms and
delivery dates. They can also attach files
containing detailed product specifications.
Once submitted, e-mail notification is sent
to registered developers announcing a new
bean request.

To become a registered developer you
enter your e-mail address, company name
and country. This information isn’t publicly
displayed on the Web site – your identity is
revealed only if you submit a winning bid.
Additionally, you enter your areas of tech-
nical expertise, spoken languages, develop-
ment languages, years of experience, certi-
fications, number of developers, billing
rates and expertise keywords. This infor-
mation is publicly displayed (see Figure 2).

After registering as a developer, you
begin to receive e-mail notification of bids.
E-mail is used extensively throughout the
system to notify you of all relevant events.
It’s sent to and from blind e-mail addresses
and then automatically forwarded to the
correct address. This allows easy commu-
nication between users while retaining
complete anonymity. You review compo-

FLASHLINE MODEL ON JAVABEANS MARKETING

Outsourcing Development
One Bean at a Time
Companies post requests for specified

JavaBeans that are then bid on by developers

by Charles Stack

DEVELOPER
REGISTER TO BID

CREATE/EDIT
BEAN REQUESTS

DEVELOPER VIEW
BEAN REQUESTS

ASK
QUESTION

REVIEW
BID

VIEW
DEVELOPER

VIEW
BID

ANSWER
QUESTION

After
Bidding
Closes

SELECT WINNING
BID (COMPANY)

PLACE
BID

EDIT
BID

Figure 1: Beans by Design flowchart

http://www.JavaDevelopersJournal.com 51Java DEVELOPER’S JournalVOLUME: 4 ISSUE: 5 1999 •

KL Group
www.klgroup.com

52 • VOLUME: 4 ISSUE: 5 1999 http://www.JavaDevelopersJournal.comJava DEVELOPER’S Journal

nent requests on our Web site as they
become available. You can also download
and review any file attachments. Through a
fully integrated question-and-answer facili-
ty you can post questions to be answered
by the bean requester. Questions and
answers are publicly posted with the
request. Our brief experience (Beans by
Design had been open only a few weeks at
the time this article was written) has shown
the Q & A feature to be extremely valuable
in clarifying and refining the requests.

To bid on a request you simply enter a
price in U.S. dollars and any necessary
notes or terms. The company requesting
the component is e-mailed notification that
a bid has been entered.

To prevent confusion over what was
originally entered, the original bean request
(see Figure 3) can’t be edited. However, the
requester can add information to the
request at any time. This information is
date-stamped and appended to the original
request.

The average request is open for 24 days
and receives three bids. Companies re-
questing components can review the bids
and bidders at any time. The system allows
requesters to ask confidential questions of
any bidder. To aid in the bid review
process, requesters can segment the bids
into several categories. When first
received, the bid is marked NEW. The
requester then reviews the bid, and the bid-
der can mark it either REJECT or INCLUDE.
This allows easy ongoing review of the bids
as they arrive.

Requesters review the bidder informa-
tion online. They can view their areas of
expertise, number of developers, previous
projects and technical certifications. They
can request additional information from the
bidder by blind e-mail. Most important,
they can review feedback from other com-
panies that have used this development
company through Flashline.com Beans by
Design.

Once the bidding closes, the requester
is free to accept a bid. The winning bidder
is notified by e-mail. The requester and
developer then contact each other directly
to begin development and Flashline’s direct
involvement in the process ends.

Upon accepting a bid, the requester is
asked to briefly explain why it was accept-
ed. The requester may indicate that it was
the lowest priced, or the bidder had the
most experience in a particular area, the
best credentials, or the best online reviews
– or any other applicable reason. This infor-
mation is e-mailed to nonwinning bidders
as feedback so they can improve their bid-
ding.

After the JavaBean component is deliv-
ered, Flashline requests feedback on the

developer. This feedback is then incorpo-
rated into the developer’s database for
review by companies considering using the
developer in the future.

Preliminary results for Beans by Design
are encouraging. All requests have received
multiple bids. Over half were successfully
awarded. Unsuccessful requests seem to
fall into two categories: either no bids were
deemed acceptable or the request was met
through other means – a noncomponent
solution was found or a prewritten compo-
nent was located. There may also be a cer-
tain amount of testing the waters just to see
how the system works and what type of
response might be generated.

Interestingly, the dollar range between
the lowest and highest bid on a single
request has been surprisingly large, often
10x or more. This, we think, reflects the
immaturity of the component industry
more than anything else. It’s also reflective
of the opportunities for large cost reduc-
tions compared to outsourcing entire appli-
cations. Developers who have extensive
experience and libraries of already written
components can deliver components cost-
effectively.

Currently, more than 250 developers
with a wide range of experience are regis-
tered from 14 different countries.

Beans by Design is currently a free ser-
vice. Flashline’s primary mission is to build
an online marketplace for component soft-
ware. We sell downloadable JavaBean com-
ponents from over 40 vendors, and are
completely committed to building a true

software component industry. The service
will increase the number of components in
the marketplace. Every filled request
means one more component. Many devel-
opers retain intellectual property rights to
the custom components. These compo-
nents can then be commercialized and list-
ed in the Flashline database of prewritten
components. Beans by Design also gener-
ates revenue for component developers,
which should increase their number and
profitability. Most essentially, it provides a
source for components that would not be
available otherwise, which should aid com-
panies that have committed to migrating to
component-based architectures.

As Beans by Design progresses, we may
charge a nominal annual fee and a listing
fee for each component request. We believe
these nominal fees would act to weed out
inactive developers and eliminate the pos-
sibility of frivolous requests.

Under the “Eat your own dogfood” theo-
ry of software development, our entire e-
commerce Web site, including Beans by
Design, has been developed using Java-
Beans. We use LiveSoftware’s implementa-
tion of the Java Server Pages (JSP) specifi-
cation to embed JavaBeans within HTML
pages and then call methods as needed for
session management, forms processing,
database access, credit card processing
and file downloads. The JSP JavaBean
approach allows us to separate presenta-
tion from logic -- and programmers from
designers. Keeping designers out of soft-
ware code and keeping programmers from

Figure 2: Developer registration screen

53VOLUME: 4 ISSUE: 5 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

SalesVision
www.salesvision.com

• VOLUME: 4 ISSUE: 5 1999Java DEVELOPER’S Journal54 http://www.JavaDevelopersJournal.com

trying to do HTML design qualifies as a
“really good thing.” They don’t share the
same skill sets, and they barely speak the

same language. The JSP/JavaBeans ap-
proach to Web site programming has
proved to be robust, reliable and reusable.

It is also eminently scalable and about 200
to 300% faster than traditional C/CGI pro-
gramming.

There is an enormous amount of work to
be done to create the vibrant software com-
ponent marketplace we visualize. More
Java programmers are needed. Better tools
are needed. We particularly need to
enhance UML to support component archi-
tectures. Sun and IBM must meet the
announced targets for development of the
Enterprise JavaBeans specification. Appli-
cation servers, which function as compo-
nent containers, need to mature. The bene-
fits of JavaBean software components –
faster development, increased reliability
and reduced maintenance – present com-
pelling motivation. Beans by Design offers
one small piece to this immense and excit-
ing challenge.

About the Author
Charles Stack is the founder, president and
CEO of Flashline.com, a software component
marketplace servicing IT professionals. His
Books.com, the first retail store on the Internet, is
credited with making the Internet’s first sales
transaction, in 1993. A graduate of Case Western
Reserve School of Law, Charles can be reached at
cms@flashline.com.

Figure 3: Bean request screen

cms@flashline.com

J-Spell
www.wallstreetwise.com

The Theory
Center

www.theorycenter.com

55VOLUME: 4 ISSUE: 5 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Pervasive
www/pervasive.com

56 • VOLUME: 4 ISSUE: 5 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

If you haven’t tried it yet, Swing is Good.
For those of us who’ve had to wrestle with
the java.awt to build GUIs, Swing is a much
simpler and more powerful alternative.
With its “coming soon” status in the
com.sun.java.swing classes in JFC 1.0
upgraded to “officially blessed into Java” as
javax.swing in JDK 1.2, Java application
developers everywhere should be pleased.
Although it’s only a Java extension and not
part of the core library, we should be fine
since right now we really don’t need GUI
support for doorbells, toasters or electric
frying pans.

For general Java programming, Swing
works pretty well out of the box. Text fields,
text areas, buttons, labels, lists and trees
cover a large majority of what the average
GUI developer needs. However, for harder-
core development, Swing still needs some
customization. I’m an infrastructural pro-
grammer at heart; every time I need to cus-
tomize something in Java, I try to do it
right, once, and add the improvements to
my personal Java packages. Every time I do
a new project my toolbox expands a little
bit more. While working on a recent project
I needed to build a facility for automatically
positioning windows. Over the years, I’ve
hacked autopositioning several times in C,
C++ and Objective C. This time I decided to
do a nice, clean Java implementation.

The Autopositioning Problem
The class that most developers use as

the base for a window on a screen in Swing
is JFrame. Left to themselves, JFrames are
initially positioned at (0,0). When they’re
shown, each new JFrame will stack up, one
on top of the other, with all of their origins
at (0,0) – obscuring previously created
JFrames, as shown in Figure 1a. In any real
application, this gets to be difficult for the
user: each new window has to be selected
and moved by hand. Autopositioning
should be done prior to the first appear-
ance of a window, in a way that lets the user
identify it easily in relation to its neighbors.

The JFrame inherits the java.awt.Frame
lineage, along with its ancestor java.awt.-
Component handling positioning. A compo-
nent is positioned using its setBounds()
method, and the new intended position and
size of the component are provided as argu-
ments. Assuming we know the size, we need
to assign a reasonable new (x,y) location to
the JFrame for autopositioning prior to the
first call to setBounds().

A popular strategy for keeping windows
from obscuring each other is by cascading
them – staggering them within an area so
that new windows roll across it in an order-
ly fashion, each slightly offset from the pre-
vious one, as shown in Figure 1b. When the
position reaches a predetermined limit, it’s

wrapped around and the staggering cycle
starts again. Many windowing applications
use this strategy today, and it’s the one I
constructed, but in a very robust way.

The Cascade Object
The workhorse of our code is the Cas-

cade object. A Cascade implements the cas-
cading behavior in one dimension: an
instance steps across locations within an
area, wrapping around at the end. The
object has two principal behaviors, one to
get the current location:

public int location ()

and another to increment it:

public void increment ()

When a Cascade is created it is set with
default values that implement a default stag-
gering and wrapping behavior. These values
will all have set and get methods so that cus-
tom cascading may be configured. Each Cas-
cade requires four parameters to implement
a robust behavior: an offset, a position, a
step and a wrap, related schematically in Fig-
ure 2. The location is equal to the offset+posi-
tion, and when the Cascade is incremented,
step is added to position. Position is then
effectively adjusted to be within wrap’s limits
via a modulus function. The values for wrap
must be greater than zero, while the values
for offset and step may be assigned any
value. Although the initial value of position
may be set arbitrarily, subsequent values are
calculated using the other parameters.

Besides these behaviors, there are the
requisite canonical inclusions for serializa-
tion, cloning and content-based equality
tests. It’s always a good practice to throw
them in because you never know what you
may want to do with the object later, and
they’re easier to add while you’re writing
the code rather than as an afterthought. In
addition to the default constructor, a ver-
sion that takes the four parameters is also
provided. The source code for the Cascade
class appears in Listing 1.

It should be noted that after enough
cycles of stepping and wrapping, the gener-
ated position will begin to repeat. That’s
the nature of a modulus function applied to

Making your infrastructure
invisible and easy to use

by David Anderson

Cascading JFrames

JAVA PROGRAMING TECHNIQUES

Figure 1: Several JFrame-based windows in (a) default positions, and (b) cascaded positions

Instantiations
www.instantiations.com

57VOLUME: 4 ISSUE: 5 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

ADVERTISER INDEXADVERTISER INDEX
BEA WebLogic 2
www.weblogic.beasys.com 800-817-4BEA

borland.com 13
www.interbase.com/products/demojdj.html 800-451-7788

borland.com 35
www.borland.com/jbuilder/ads/javadev 800-336-6464

ColdFusion Developer's Journal 25
subscribe@sys-con.com 800-513-7111

Career Opportunity Advertisers 65-69
800-582-3089

Cerebellum Software 6
www.cerebellumsoft.com 888-862-9868

CertifyOnline.com 48
www.certifyonline.com 877-528-2937

DevelopMentor 27
www.develop.com 800-699-1932

EnterpriseSoft 11
www.enterprisesoft.com 510-742-6700

Flashline.com 21
www.flashline.com 216-861-4000

InetSoft Technology Corp. 11
www.inetsoftcorp.com 732-235-0137

INPRISE Corporation 4
www.inprise.com/appserver 800-336-6464

Insigna Solutions 31
www.insignia.com 800-848-7677

Advertiser Page
Instantiations, Inc. 57
www.instantiations.com 503-612-9337

InterLand 43
www.interland.com 800-217-0985

Java Developer's Journal.com 20
www.javadevelopersjournal.com 800-513-7111

JBuilder Developer's Journal 13
subscribe@sys-con.com 800-513-7111

KL Group 17
www.klgroup.com 888-328-9596

KL Group 51
www.klgroup.com/hunt 888-328-9597

KL Group 72
www.klgroup.com/culprits 888-328-9597

Microsoft Corporation 36-37
www.msdn.microsoft.com/visualc 800-509-8344

NSI Com 41
www.nsicom.com 977-480-3311

Object Domain Systems Inc. 19
www.objectdomain.com 919-461-4904

Object International 23
www.togetherj.com 919-772-9350

ObjectSpace 71
www.objectspace.com/train_now 800-OBJECT 1

OneRealm, Inc. 7
www.onerealm.com 303-247-1284

Pervasive Software 55
www.info@pervasive.com 800-884-6235

ProtoView 3
www.protoview.com 800-231-8588

Riverton Software Corporation 29
www.riverton.com 781-229-0070

Sales Vision 53
www.salesvision.com 800-275-4314

Summer Internet World 99 47
www.events.internet.com/summer99 800-500-1959

Slangsoft 49
www.slangsoft.com 972-375-18127

Snowbound Software 46
www.snowbnd.com 617-630-9495

Software Development 99 62-63
www.sdexpo.com 800-441-8826

Specialized Software 61
www.SpecializedSoftware.com/jdj/ 800-328-2825 x6576

The Theory Center 54
www.theorycenter.com 888-843-6791

Tidestone Technologies 25
www.tidestone.com 888-880-0665

Wall Street Wise Software 55
www.wallstreetwise.com/jspell.html 212-348-5031

WEB99 61
www.mfweb.com 800-441-8826

Advertiser Page Advertiser Page

58 • VOLUME: 4 ISSUE: 5 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

a monotonically increasing value. Even
though it can’t be eliminated, by choosing
the step and wrap values carefully, the
cycle of repetition can be made quite long –
long enough so that only applications that
are incrementing the Cascade many, many
times will cause it to cycle.

The PointCascade Object
In order to cascade a two-dimensional

location, you simply use two Cascade
objects, one for the x dimension, and anoth-
er for the y dimension. The PointCascade
class wraps together two Cascade objects
under one interface. It allows access to the
underlying Cascades directly or manages
them indirectly through messages that take

java.awt.Point objects as arguments. The
same set and get methods that are provided
in Cascade are also provided in PointCas-
cade, but with Points as arguments instead
of integers. Methods to set and get the xCas-
cade and yCascade are provided as well.

The signature of the increment() method
is the same in the PointCascade as it was in
the Cascade, but the PointCascade’s location
method now returns a Point object. This
point is cascaded in x and y – we’ll use it to
position a JFrame. The staggering and wrap-
ping can be set independently for the x and
the y coordinates so a large set of noncycled,
cascaded points can be created. However, if
the Cascade defaults are used, the x and y
coordinates will increment in lockstep, and

only points on a diagonal will be generated.
Again, the way to overcome this is to set up
the parameters of the embedded Cascade
objects carefully. By adjusting the step and
wrap values of either or both of the Cascade
objects, the cascading can be made to behave
very differently in x and y. The source code
for PointCascade is in Listing 2.

The CascadingJFrame Object
To make JFrames cascade themselves

automatically, a new location must be
retrieved from the PointCascade object
when a new JFrame is created, and then the
PointCascade must be incremented. Subse-
quently, when the JFrame is first positioned,
its setBounds() method places the JFrame
at the new location. The easiest way to do
this in Java is through inheritance.

The CascadingJFrame class is a subclass
of JFrame that contains a static PointCas-
cade. After the JFrame has been created, the
constructor gets the PointCascade’s loca-
tion, increments the PointCascade to set up
for the next invocation and sets an autopo-
sition flag to true. The class also overrides
both of the JFrame’s setBounds() methods.
If the autoposition flag is set, the generated
location is used in the call to the JFrame’s
setBounds() method to do the actual posi-
tioning. The PointCascade is static since it
has to be shared between all the instances
of CascadingJFrame. Each CascadingJFrame
stores its generated location, but the Point-
Cascade that generates these locations is a
common resource. If any of the PointCas-
cade’s values are changed after locations
have been generated, only the subsequently
generated CascadingJFrame locations will
be affected. The CascadingJFrame class has
static methods to set and get its underlying
PointCascade.

The cascading mechanism can also be
negated in certain cases if desired. If the
application determines that a particular
CascadingJFrame is somehow special, then
the initial positioning can either be adjusted
by calling the CascadingJFrame’s setLoca-
tion() method with the special location as a
Point, turning off the autopositioning alto-
gether, calling the CascadingJFrame’s setAu-
toposition() method with a false value or
using an extended constructor.

With a good understanding of the cascad-
ing mechanism, complete control of autopo-
sitioning is possible. It’s as simple as that.

Multiple Cascades
But we can always make it more robust!

It isn’t enough to simply cascade. I immedi-
ately found that I wanted to have different
types of windows cascading in different
ways. For instance, in one area of the
screen I wanted a stack of small windows,
and in another a staggered set of larger

Figure 2: The relationship between the values in a Cascade and
the results of successive increments on the location

0
offset position

increment
increment

increment

increment
increment

wrapping

increment
increment

step
wrap

Figure 3: The cascading JFrame inherits from Swing’s JFrame and, in turn, the java.awt.Component
class, which manages positioning. The class contains a static hashtable whose values are PointCas-

cades and keys are arbitrary names managed by the developer. The PointCascade contains two orthog-
onal Cascades, one each for the x and y dimensions. When an instance of CascadingJFrame is created,
the class is accessed to retrieve the next location for the named PointCascade. When the instance’s set-

Bounds() method is subsequently called, the component is autopositioned at the location.

java.awt.Component

...swingJFrame Cascade Cascade

instance

PointCascade

CascadingJFrame

boolean autoposition

int offset
int position

int step
int wrap

x y

Point location

H
as

ht
ab

le

59VOLUME: 4 ISSUE: 5 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Watch Jimi Pro open this
100-million pixel image of Mars
in just a 10 meg Java runtime
heap. You won't believe it's not
native. Jimi delivers power,
speed, and simplicity. Read and
write tons of image formats
including TIFF, BMP, PNG, GIF,
PSD, TARGA, JPEG, PICT and more

Try It Now FREE at
WWW.ACTIVATED.COM

or call

212-896-8220

Pure Java Imaging
So Fast You’ll Say...
Pure Java Imaging
So Fast You’ll Say...

Either way, your success depends on who your
strategic business partners are. For your partners
and the Java industry, your product looks as good
as your display ad in Java Developer’s Journal!

Are You a Java Start-up with a Shoestring Advertising Budget?
-or-

Are You a Software Giant with a Shoestring Advertising Budget?

PowerCerv Corporation
(Nasdaq: PCRV)
On their way to a successful IPO, this
two-year consecutive SYS-CON
advertising partner did not miss
advertising in one single issue!

Only
$299*

*Jimi Standard - Royalty Free

We know
how to
create
success
stories!

Carmen Gonzalez
Vice President,

JDJ Advertising Sales
carmen@sys-con.com

JIMI 2.0
TM

60 • VOLUME: 4 ISSUE: 5 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

ones. Applications all have their own idio-
syncrasies; my goal was simply to cover
most of the regular ones with the simple
CascadingJFrame objects. The solution I
implemented was to make the Cascad-
ingJFrame class contain multiple static
PointCascade objects that could be arbi-
trarily named by the application. When a
CascadingJFrame object is constructed, the
application can specify the particular Point-
Cascade to use for autopositioning.

To avoid adding complexity for the
developer, the simple, unnamed-PointCas-
cade case should continue to work; the calls
to CascadingJFrame without a named Point-
Cascade need to remain available. After all,

plenty of applications do not require rigor-
ous control or multiple streams of autoposi-
tioning. For most developers, using a single
PointCascade would suffice, with only a few
odd JFrames positioned directly. For these
situations a default PointCascade is man-
aged behind the scenes for the unnamed-
PointCascade calls.

To implement the multiple PointCascade
objects, the CascadingJFrame is made to
contain a static hashtable of named Point-
Cascades instead of just a single static Point-
Cascade. The calls to CascadingJFrame with-
out names are connected to the named calls
using the default PointCascade’s internal
name. This way, when an unnamed Point-

Cascade call comes in, the default PointCas-
cade object is retrieved from the hashtable,
used to get the location and incremented. If
a named call comes in, the particular Point-
Cascade is looked up, used and increment-
ed. If the specified PointCascade is not in the
hashtable, a new one is created and used. In
this way the application maintains complete
control over the autopositioning name-
space. The source code for Cascad-
ingJFrame is in Listing 3.

Summary
The overall Design of the Cascad-

ingJFrame is shown in Figure 3. The impor-
tant thing to notice is that the Cascad-
ingJFrame class contains the hashtable of
PointCascade objects, not a Cascad-
ingJFrame instance. The instance simply
contains the location that was retrieved
from a specific PointCascade and an
autoposition flag indicating whether or not
the retrieved location should be used. The
hashtable is a static – effectively shared by
all the CascadingJFrame instances.

Autopositioning frees the developer’s
head a little, which is good – one less thing
to think about. By providing the popular
window-cascading behavior, in multiple
streams when desired, sophisticated win-
dow positioning may be achieved with rela-
tively little effort – by simply setting a few
parameters and inheriting from the Cascad-
ingJFrame class. It’s also interesting to con-
sider extending additional subclasses that
offer alternate positioning policies, or per-
haps “position-memory” in which the
boundaries of particular windows are writ-
ten to persistent storage whenever they are
moved or resized, and recovered when they
are reconstituted by the application in a
subsequent session.

Finally, a philosophical note: the best
infrastructures are invisible and work auto-
matically. The CascadingJFrame class
envelops regular initial window positioning,
typically to the degree of letting the appli-
cations programmer forget about it. And
that is the best an infrastructure developer
can hope for…making it so easy for others
to do their work that they don’t have to
concern themselves with the underlying
framework. If that goal is achieved, the
framework was done right.

About the Author
David Anderson is a consulting software engineer at
LEXIS-NEXIS, an online information service in Dayton,
Ohio. At night he puts on his Java shoes and cranks
out reams of code as a contractor. He has been
developing software since 1974. Dave can be
reached at monkey@one.net or through the monkey
house (http://w3.one.net/~monkey).

monkey@one.net

Specialized
Software

www.specializedsoftware.com

Web 99
www.mfweb.com

61VOLUME: 4 ISSUE: 5 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

62 • VOLUME: 4 ISSUE: 5 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

SD
www.sde

63VOLUME: 4 ISSUE: 5 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

99
expo.com

64 Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com• VOLUME: 4 ISSUE: 5 1999

KL Group
Appoints New
President
(Toronto, Ont.) – KL
Group has appointed
David Black as its
new president. For-
mer president and

cofounder Greg Kiessling will
retain his position as chairman.

Prior to coming to KL Group,
Black served as president of Sun
Microsystems in Canada from
1984 to 1989, and was instru-
mental in earning Sun’s designa-
tion as one of the “Top 100 Com-
panies to Work for in Canada”
by the Canadian Financial Post.

For more information visit
www.klgroup.com.

Borland Names Dale Fuller
Interim President and CEO
(Scotts Valley, CA) – The board
of directors of Borland has
appointed Dale Fuller as interim
president, chief executive offi-

cer and director. A
broadly experienced
technology execu-
tive, Fuller, 40, most
recently served as
president and CEO
of WhoWhere? Inc.,

one of the world’s leading Inter-
net sites, before it was acquired
by Lycos Inc. last year.

Fuller succeeds Delbert W.
Yocam, the former chairman
and chief executive officer, who
resigned on March 31, 1999.

For more information visit
www.borland.com.

Borland Announces JBuilder 3
(Scotts Valley, CA) – Borland, the
software development tools divi-
sion of Inprise Corporation, has
announced Borland JBuilder 3, a
major new version of its award-
winning family of visual develop-
ment tools for creating platform-
independent Java business and
database applications. JBuilder
3 provides com-
prehensive sup-
port for the Java
2 platform and
allows individ-
ual and corpo-
rate developers

to create platform-independent
business and database applica-
tions, distributed enterprise
applications and JavaBean com-
ponents even more easily.
JBuilder 3 is planned to be avail-
able on multiple platforms: first,
on Microsoft Windows, then on
Solaris and Linux.

ObjectWave Expands
Java-Based Tool Offerings
(Chicago, IL) - ObjectWave Cor-
poration has announced
ObjectWave JavaRe-
porter, a productivi-
ty tool written in
Java that simplifies
the process of creat-
ing reports. JavaReporter con-
sists of an advanced toolset
that permits programmers to
embed documentation develop-
ment capabilities for users
within a Java application.

For more information visit
www.objectwave.com.

Sales Vision Announces
Support for 3Com’s Palm
Computing Devices
(Charlotte, NC) – Sales Vision,
Inc., has released a conduit
that synchronizes CRM infor-
mation between Jsales, Sales
Vision’s flagship product, and
3Com’s Palm Computing con-
nected organizers. Sales
Vision’s Palm Computing con-
duit enables Jsales users to
automatically coordinate con-
tacts, calendar/activities and
to-do items on their laptops as
well as on their Palm Comput-
ing devices.

For more information you
can visit their Web site at

www.salesvision.com.
IBM Releases the Industry’s
Fastest JVM for Windows
(Somers, NY) – IBM has
announced the industry’s
fastest Java Virtual Machine for
the Microsoft Windows operat-
ing system. According to widely
used performance benchmarks,

IBM’s JVM for Windows
outperforms competi-
tors’ most recent offer-
ings by an average of
30%.

The JVM is available
at no charge for Win-
dows 95, 98 and NT
operating systems.
Developers can immedi-
ately download IBM’s
offering of the Java Vir-
tual Machine for the

Microsoft platform from
www.ibm.com/java/.

Blue Lobster Announces
Linux Version of Web-to-
Legacy Connectivity Solution
(San Jose, CA) – Blue Lobster
Software has released its Stingray
Software Development Kit (SDK)
with support for Red Hat Soft-
ware’s version of the Linux oper-
ating system. Now Stingray will
provide Linux developers with
the ability to Internet-enable 3270
and 5250 legacy applications and
automate the process of building
reengineered interfaces or serv-
er-side applications for 5250
applications.

(Freemont, CA) -- Insignia Solu-
tions and Next Nets Corpora-
tion of Japan have jointly
announced that Next
Nets will use Insignia’s
Jeode platform to
implement its Win-
dows CE-based
Cessna mobile ter-
minal system with Java-
compatible technology. The
Cessna system is designed for
retail, logistics and distribu-
tion applications. The Jeode

platform is Insignia’s imple-
mentation of Sun Microsys-

tems’ Java technology for
embedded systems.

Cessna was
released in Janu-
ary and runs

Microsoft Windows
applications with Win-

dows CE at the same
speed as most Windows NT

servers.
For more information visit

www.insignia.com.

Insignia and Next Nets Announce
Selection of Jeode Platform

(Los Angeles, CA) – Cybelius TouchMore! 2.0
received the “Best of Show” award as the best
Web development application server at the
Spring Internet World ’99.

Cybelius TouchMore! 2.0 is a profes-
sional tool for adding interactivity
and functionality to 3D VRML

product models in Internet applications. The
new product offers benefits that allow users
to create real, physical, product-like proper-

ties and interactivity in their product mod-
els, optimized into small file sizes.

For more information visit their Web
site at www.cybelius.com.

Cybelius TouchMore! 2.0 – Best of Show Award

65VOLUME: 4 ISSUE: 5 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Employment Ad

66 • VOLUME: 4 ISSUE: 1 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Employment Ad

67VOLUME:4 ISSUE: 1 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Employment Ad

68 • VOLUME: 4 ISSUE: 1 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Employment Ad

69VOLUME:4 ISSUE: 1 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Employment Ad

70 • VOLUME: 4 ISSUE: 5 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

‘Make the Iron Hot
by Striking it’ —Oliver Cromwell

by Rick Ross

Rick Ross is president and founder of the Java Lobby
(www.javalobby.org), which currently has more than
34,000 members. He is also president of Activated
Intelligence (www.activated.com) and can be

THE GRIND

Everyone wins

when the platform

is supported by

thousands of

innovative developers

and the solutions

they create

rick@activated.com

What I want most for Java developers is opportunity! I don’t mean just the opportunity for a
steady job in the corporate world that any competent Java developer should enjoy with confi-
dence. Rather, I mean the awe-inspiring opportunities that come from the sense that Java devel-
opers can potentially change the world of technology, and quite possibly the world as a whole.

In truth, it just wasn’t that long ago that two guys named Steve started Apple Computer in a
California garage and helped spark a furious explosion of innovation and economic growth. In
fact, it wasn’t even so long before that that Bill Hewlett and Dave Packard started their compa-
ny in a different California garage! (Note to Myself: Perhaps I should consider working in a Cali-
fornia garage.) Energy, enthusiasm, skill and dedication are undoubtedly required ingredients
for such successes, but my countless conversations with Java developers have proved that
there is no shortage of these within this fantastic and diverse community.

Java and the Internet have sparked an explosion of their own, in a different time and place in
history, but no less significant and no less full of awesome potential. Before Java, the conven-
tional wisdom was that our industry had matured and consolidated too much for the small
developer to be able to make a difference. The dream that hard work and perseverance might
result in the creation of the next Apple or Hewlett-Packard had given way to a different dream.
For many, it went something like this, “I hope that when the Borg cube starts moving into the
market sector I work in, they will assimilate my company rather than crush it.” It was bleak by
comparison – but consistent with apparent industry trends. Fortunately, it seems that hope for
a better future is alive and well, and Java has played a big part.

This Java explosion should present a myriad of opportunities for developers, and the
impending boom in smart devices and information appliances should amplify it dramatically.
For some reason, however, not enough of these opportunities have emerged, and the fullness of
Java’s platform-neutral potential seems to be sidetracked. In fact, the theme of the year from
corporate Java spin-doctors seems to be: “We all know Java isn’t too great for client-side com-
puting, but the real future of Java is on the server-side anyway.”

Yeah, right! It’s interesting that the people pushing this amended version of the Java value
proposition sell – you guessed it – servers! It’s no surprise that they place less emphasis on the
power of client-side Java computing than they do on server-side, but I feel it is a wholesale aban-
donment of the original Java vision and of some of the greatest Java opportunities. I want those
opportunities to be kept alive and to help Java developers everywhere thrive while pursuing
them with all their prodigious talent and energy.

What can we do, as individual developers and as a community,
to make this happen?

First, we can think for ourselves and keep the Java vision alive, despite what the corporate
publicity and marketing machines are pushing. This is a simple and potent step, but an essen-
tial one. Who cares that Sun may be floundering without focus and that Microsoft quietly con-
tinues its anti-Java attack? The reality of the situation is that we are far less dependent on these
big companies than they are on us. The corporate functionaries who spread the conventional
wisdom that Java doesn’t have what it takes for client-side applications couldn’t compile “hello
world” if their lives depended on it. If we keep our eye on the ball and move in the right direc-
tion, then the corporate interests will eventually have no choice but to be responsive. They are
reliably opportunistic, but slow to perceive opportunity.

Second, we can develop a whole lot more top-quality client-side Java software. The new IBM
implementation of Java for Win32 is a blazing speed demon, so use it to build something great.
Knock the pundits and naysayers out with Java applications whose performance, reliability and
value plainly prove them wrong. Take them by surprise and blow them away by using Java to
deliver the distributed network applications they’ve all been predicting for so long. Client-side
Java starts to matter when you write client-side Java applications that matter. It’s not only pos-
sible to build great client-side Java solutions – the opportunity to do it is here at our fingertips.
Don’t wait, just do it!

Finally, we can collectively make it clear to the platform providers and their major corporate
partners that we insist on having a piece of the action, too. It’s obvious that it should be this
way and that everyone wins when the platform is supported by thousands of innovative devel-
opers and the solutions they create. We need to let manufacturers know we want full and imme-
diate access to Java in the tools and devices that will form the foundation of the next genera-
tion of information technology. Sony, Motorola, TCI, ATT, Sun – are you listening?

I want a device the size of a Palm Pilot that will run for six months on a single set of batteries,
with a brilliant color display and perfect audio, that offers high-speed wireless connectivity any-
where – to my family, friends and colleagues, the Web, and all my personal data. I want this device
to help me achieve better productivity in my work and enjoy greater satisfaction from my play –
and I want it to be powered by Java! What are you waiting for? Please get out there and build it for
me! I’ll be forever grateful that you kept the vision of Java’s real opportunities alive!

http://www.JavaDevelopersJournal.com 71Java DEVELOPER’S JournalVOLUME: 4 ISSUE:1 1999 •

Object Space
www.objectspace.com

72 Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

KL Group
www.klgroup.com

• VOLUME: 4 ISSUE: 5 1999

